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Intelligent tutoring systems (ITS) support students in learning a complex problem-solving skill. One
feature that makes an ITS architecturally complex, and hard to build, is support for strategy freedom, that
is, the ability to let students pursue multiple solution strategies within a given problem. But does greater
freedom mean that students learn more robustly? We developed three versions of the same ITS for
solving linear algebraic equations that differed only in the amount of freedom given to students. One
condition required students to strictly adhere to a standard strategy, the other two allowed minor and
major variations, respectively. We conducted a study in two US middle schools with 57 students in
grades 7 and 8. Overall, students’ algebra skills improved. Contrary to our hypotheses, the amount of
freedom offered by the system did not affect students’ learning outcomes, nor did if affect their intrinsic
motivation. Students tended to use only the standard strategy and its minor variations. Thus, the study
suggests that in the early stages of problem-solving practice within a complex domain, an ITS should
allow at least a small amount of freedom, validating, albeit to a limited degree, one source of complexity
in ITS architectures. To help students develop strategic flexibility, a desirable outcome in many domains,
more is needed than letting students chose their own solution strategy within a given problem.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Intelligent tutoring systems (ITS) are an adaptive learning technology aimed at helping students learn a complex cognitive skill
(Koedinger & Corbett, 2006; VanLehn, 2006; Woolf, 2009). Many ITS support tutored problem solving, that is, they provide step-by-step
guidance as students solve complex problems (VanLehn, 2006). A distinguishing characteristic of ITS is that they provide guidance with
respect to the steps in a problem, rather than just providing feedback on the final answer. Some researchers argue that guidance at the step
level is what makes ITS effective (VanLehn, 2011). ITS are beginning to be widely used in the US. For example, Cognitive Tutors, a type of ITS
grounded in cognitive theory and cognitive modeling, are used in mathematics instruction in about 2700 schools (Koedinger & Corbett,
2006). Many evaluation studies have shown that ITS enhance learning, compared to more typical forms of instruction (Beal, Walles,
Arroyo, & Woolf, 2007; Graesser, Chipman, Haynes, & Olney, 2005; Koedinger & Aleven, 2007; Koedinger, Anderson, Hadley, & Mark,
1997; Mitrovic, Martin, & Mayo, 2002; Ritter, Kulikowich, Lei, McGuire, & Morgan, 2007; VanLehn, 2011; VanLehn et al., 2005).

While ITS are effective in helping students learn, they have traditionally been quite difficult to build (Murray, 2003). Many factors
contribute to the challenge of building an ITS, including the fact that ITS architectures tend to be quite complex. Herewe focus on one feature
that contributes to ITS complexity, namely, the ability of ITS to support strategy freedom on the part of the student, or, equivalently, the
system’s ability to recognize multiple student solution strategies within the same problem. For example, in the Algebra Cognitive Tutor (e.g.,
Koedinger et al., 1997; Koedinger & Corbett, 2006), a successful andwidely used ITS, students can solve equations using any correct sequence
of operations. The tutor able to provide guidance at each step, regardless of which strategy the student decides to follow. This ability is often
thought to be an important and attractive characteristic of ITS, even if it is not always called out in theoretical accounts. For example,
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VanLehn’s (2006) seminal article about the behavior of tutoring systems assumes that ITS are capable of supporting multiple solution paths
within a single problem, but does not call attention to this feature. The ability to support multiple paths is assumed to be necessary in
domains where problems have multiple solutions strategies and thought to help students learn more effectively. This ability, however,
comes at a considerable cost: systems that support multiple solution paths tend to be considerably more complex than simple tutors that
support only a single solution path within any given problem, as discussed further below. But does this particular source of complexity help
make ITSmore effective? Put differently, does the greater freedom afforded by ITS result in better learning results andmotivation on the part
of students?

In many domains, one readily finds problems that allow for multiple solution methods. Also, many solution methods allow for small
variations, further adding to the variety of problem-solving behavior. For example, in the domain of algebra (the application domain for the
current study), even relatively simple equations can be solved in different ways. As another example, even in early math learning, one finds
many problems that can be solved in multiple ways. In a fraction addition problem, for example, different common denominators can often
be used. In proportional reasoning, many different solution strategies have been identified (e.g., http://en.wikipedia.org/wiki/Proportional_
reasoning#Examples) and within each of these strategies, many minor variations are possible. Even a simple solution procedure based on
cross-multiplying yields 64 (minor) variations, corresponding to different solution paths. Similarly, in computer programming (another
popular domain for ITS development), solutions to even very simple programming problems typically allow for multiple solution strategies,
which each have large numbers of many variations. Even in very simple Prolog programs, the number of variations can number in the
thousands (e.g., Le & Pinkwart, 2011). Likewise, in domains such as geometry, logic, and physics, problems typically allow for a rather large
number of different solutions. In short, problemswithmultiple solution strategies and variants are tantamount inmany domains. To operate
effectively in such domains, a tutoring system must, it would appear, be able to recognize all the major and minor variations, lest it flag
correct student solutions as incorrect, which may be detrimental for learning and motivation.

To do so, ITS typically represent relevant (domain-specific) problem-solving knowledge and use it to provide tutoring. Different types of
ITS use different knowledge representation techniques, but they all use domain-specific knowledge to follow students as they choose their
own individual path through the problem space, to evaluate student solution steps or partial solutions, and to provide correctness feedback,
hints and error messages. For example, Cognitive Tutors use production rules (e.g., Aleven, 2010; Anderson, Corbett, Koedinger, & Pelletier,
1995; Koedinger & Aleven, 2007; Koedinger & Corbett, 2006) to represent the knowledge and strategies of a competent problem solver in
the given domain. In the Algebra Cognitive Tutor (Koedinger et al., 1997; Koedinger & Corbett, 2006), different algebraic operations are
captured by different production rules; the tutor can generate different solution paths by stringing together different applicable rules,
enabling it to recognize a great variety of student strategies. Constraint-based tutors represent the constraints that correct problem solu-
tions must satisfy (e.g., Mitrovic et al., 2002). Typically, many different solutions and solution variants fall within a given set of constraints,
and therefore, will be recognized as correct by the tutor. Example-tracing tutors (Aleven, McLaren, Sewall, & Koedinger, 2009; Koedinger,
Aleven, Heffernan, McLaren, & Hockenberry, 2004) use behavior graphs, elaborated examples that explicitly enumerate the solution space of
problems. As discussed below, different paths in the graphs represent different strategies, enabling the tutor to recognize these different
strategies. By flexibly matching student behavior against the graph, they can also recognize many minor variations characterized by
different order of steps, small notational variants, and even, different choice of steps (e.g., different common denominators in fraction
addition problems). The architecture of each of these systems is complex however, since it must support the particular type of knowledge
representation used, and must support its use in service of the various tutoring functions that these systems perform.

On the other hand, several effective ITS support only a single solution path within any given tutor problem, for instance ASSISTments
(Feng, Heffernan, & Koedinger, 2009), AnimalWatch (Arroyo,Woolf, & Beal, 2006) andWayang Outpost (Beal et al., 2007). Such systems tend
to have less complex architectures and tend to be easier to build. In theory, single-path tutors can be built by building a tutor interface for the
given problem type, and associating tutoring support with specific interface elements. The support associated with a given interface
element may include correct and incorrect answers, as well as hint and error messages. One reason that this simple approachworks is that if
there is only one solution path, the answer to one-step in a given problem does not vary depending how a prior step in that same problem
has been answered.

ITS Researchers and developers have so far assumed that problem-solving activities amenable to multiple solution strategies, freedom
and supporting multiple strategies is beneficial for learning results and motivation (Mitrovic, Mayo, Suraweera, & Martin, 2001; VanLehn,
2006). Mastery, understanding, and flexible use of multiple strategies are often seen as an important ingredient of “adaptive expertise”
(Hatano & Inagaki, 1986). In mathematics education (the current study focuses on algebraic problem solving), the importance of focusing
students on multiple strategies is highlighted in many sources, including the NCTM standards (NCTM, 2000, p. 64) and a book reviewing
research advances (Kilpatrick, Swafford, & Findell, 2001). A study by Ainsworth, Wood, and O’Malley (1998) found that requiring children to
produce multiple answers to math problems was effective for a low-performing subset of students. Multiple researchers have pointed out
that an instructional approach inwhich students use and reflect onmultiple strategies is prevalent in countries that typically do very well in
international comparisons of math competence, such as China, and is less prevalent in countries that are not as highly ranked (e.g., Ma,1999;
Stigler & Hiebert, 1999).

Offering freedomwith respect to strategies may offer both cognitive and motivational benefits. With respect to cognitive benefits, when
an ITS offers strategy freedom, students may try out different strategies, experience when each strategy is effective, and develop intuitions
as to when each strategy is most effectively, in short might (ideally) help students develop strategic flexibility, as discussed above, an
important element of expertise in any domain. Supporting freedom may also be motivating; strategy freedom gives students options to
choose from and different studies show that “choice” is important for a higher intrinsic motivation and learning (Cordova & Lepper, 1996;
Patall, Cooper, &Wynn, 2010). Conversely, not supporting strategies may lead to unnecessary confusion, for instance, when the system does
not accept an alternative strategy that a student happens to know about. It may also be uninspiring or demotivating (e.g., a student may be
disappointedwhen the system rejects a particularly clever but unusual choice of solution strategy), or quite possibly frustrating, with a likely
detrimental effect on students’ learning outcomes.

In spite of the importance of the issue, and the strong arguments that can be made in favor of supporting multiple strategies, we are not
aware of any empirical studies in the literature on ITS that ask whether supporting multiple strategies does indeed pay off in terms of more
robust learning on the part of students. The current article describes an experiment to address this issue. Specifically, the goal of our study is
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to investigate to what extent the amount of freedom students experience in a tutor leads to more robust learning and greater intrinsic
motivation.

We chose to investigate this research question in the domain of early algebra learning, one of the many domains characterized by
multiple solution paths. Algebra is a suitable task domain for research into freedom and restrictions, because a linear equation (e.g.,
2(x þ 1) þ 1 ¼ 5) can often be solved in multiple ways. On the other hand, there is a standard strategy (discussed below) that is widely used
in US schools. This strategy can solve many linear equations in an optimal way (i.e., with a minimum number of solution steps), but
occasionally yields a solution path that is slightly longer than strictly necessary. We developed three versions of an ITS for solving linear
equations. These versions differed only in the amount of freedom offered within each problem (or equivalently, the range of solution paths
that the tutor recognized as valid solutions). One tutor version accepted only the standard solution strategy, one accepted the standard
strategywithminor variations, and a third version accepted all reasonable strategies, as long as each solution stepwas closer to the solution.

Star (2005) suggests that there is a possible trade off in initial stages of learning between the goal of flexible use of multiple strategies and
the goal of mastery of a standard algorithm. Star and Rittle-Johnson (2008) showed that prompting students to solve the same equation in
different ways provides better results on itemsmeasuring students’ strategic flexibility. However, students’ procedural knowledge improved
less. Therefore, we expect that more restricted tutors can help students to learn a well-defined, optimal problem-solving strategy and freer
tutors can be more helpful for deeper understanding.
2. Equation-solving strategies

To address our research questions, we developed three versions of an ITS for solving linear equations, each with exactly the same sequence
of equations for students to solve. The ITS contains a total of 44 equations divided into 5 categories, shown in Table 1. These types of equations
are similar to those found in several textbooks. The equations are sequenced in order of increased complexity, as indicated in Table 1.

The three versions of the ITS differ only in the level of freedom they allow and support. The versions are: (a) strict standard strategy, (b)
flexible standard strategy or (c)multi strategy. In the two standard strategy conditions, all equations had to be solved with a standard strategy
that is widely used in American middle-school mathematics textbooks (Benson et al., 1991; Holt, Rinehart, & Winston, 2007). This strategy
can solve almost all linear equations. The strategy is as follows: First, use the distributive law to expand any term in parentheses. Second,
combine constant terms and variable terms on each side of the equation. Third, move variable terms to one side of the equation and constant
terms to the other side. And finally, divide both sides by the coefficient of the variable term.

In the strict standard strategy, further restrictions were imposed. First, students must show intermediate steps while solving equations, in
which they indicate the particular transformation being used. For example, in the equation (2x) þ 1 ¼ 5, the only acceptable next step is
2xþ 1�1¼5�1. The ITS does not allow the student to go from 2xþ 1¼5 to 2x¼ 4without showing the intermediate step. In the American
schooling system, students just learning to solve equations are often required by their teachers to write out these intermediate steps. A
further constraint imposed in the strict standard strategy concerns so-called “doublemove operations.”When an equation has a constant and
a variable term on both sides of the equation (e.g., 2xþ 2¼ x þ 4), two move operations are needed in order to collect the variable terms on
one side of the equation and the constant terms on the other side, leading to four minor variations of the strategy (see Table 2). In the strict
standard strategy, only one of these variations is allowed: the student must start by moving the smallest variable term, which is most
common in mathematics textbooks (Benson et al., 1991; Holt et al., 2007). An example is shown in the left column of Table 2.

In the flexible standard strategy condition, on the other hand, students use the standard strategy without these restrictions. All minor
variations are allowed, including the four options for double move steps shown in Table 2. Further, students are free to either skip or do the
intermediate steps described above.

Students have the most freedom in the multi-strategy condition; students can solve the equations with any strategy that progresses
toward the goal of solving the equation. For instance, in the equation (2)(xþ 1)¼ 4 students are allowed to divide both sides by 2, instead of
using the distributive law to expand the term in parentheses, which is required in the two stricter conditions. The only restriction is that an
operation is allowed only if it brings the student closer to the solution. In the equation (2x) þ 1 ¼ 5 it mathematically correct to add 100 to
both sides of the equation, but this operation does not represent progress toward a solution, so this step is not allowed. A second restriction
is that a divide step is allowed only when it does not generate fractions. Given the time available for the study, we limited the tutor
curriculum to equations with whole numbers. Despite these two restrictions, the multi-strategy condition covers all reasonable strategies.
Importantly, it allows the use of more optimal strategies than the standard strategy (with which equations can be solved faster/with fewer
problem-solving steps). Examples of all allowed strategies (including ones more optimal than the standard strategy) are shown in Tables 3
and 4.
Table 1
Equations in the ITS.

Day Equations Example Number

Day one One-step x þ 2 ¼ 5 6
Two-steps 3x þ 1 ¼ 7 6
Parentheses 2(x þ 1) ¼ 4 3

Day two Parentheses 2(x þ 1) ¼ 4 4
Parentheses, more difficult 2(x þ 1) þ 1 ¼ 5 8
Multiple steps 3x þ 1 ¼ 2x þ 3 8

Day three Multiple steps 3x þ 1 ¼ 2x þ 3 5
Parentheses, more difficult 2(x þ 1) þ 1 ¼ 5 4

Total 44 problems



Table 2
Minor variations of the standard strategy. All variations are allowed in the flexible standard strategy condition and the multi-strategy condition. Only the first (shown in the
leftmost column) is allowed in the strict standard strategy. In the strict standard strategy intermediate steps are required, although they are not shown in this example.

Standard start with
lowest variable term

Alternative 1 start
with highest variable term

Alternative 2 start with
lowest constant term

Alternative 3 start with
highest constant term

3x þ 4 ¼ x þ 6 3x þ 4 ¼ x þ 6 3x þ 4 ¼ x þ 6 3x þ 4 ¼ x þ 6
2x þ 4 ¼ 6 4 ¼ �2x þ 6 3x ¼ x þ 2 3x � 2 ¼ x
2x ¼ 2 �2 ¼ �2x 2x ¼ 2 �2 ¼ �2x
x ¼ 1 1 ¼ x x ¼ 1 1 ¼ x
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3. System design

As is typical of ITSs (e.g., VanLehn, 2006), the equation-solving tutor developed for our study provides step-by-step guidance during
students’ problem-solving activities, including correctness feedback, next-step hints, and error feedback messages related to common
student errors. When the student enters a step, the tutor provides correctness feedback. Correct answers turn green, incorrect answers turn
red. Studentsmust explain their step by selecting from amenu, as illustrated in Fig.1. Menu-based self-explanations such as those supported
by the equation-solving tutor have been shown to be effective in prior research on ITS (e.g., Aleven & Koedinger, 2002). At any time, the tutor
provides context-specific hints at the students’ request. Usually, multiple levels of hints are available for any given step in a tutor problem,
more general hints first, followed by increasingly specific hint levels. The last hint level gives the step to the student. The hints are the same
in all three versions and always focus on the standard strategy, except when, in the multi-strategy condition, a student decides to deviate
from the standard strategy; when they do, the hints focus on the chosen strategy.

For some common errors, the tutor displays a specific error feedback message, with information about the error and how to correct it.
There are specific error feedback messages for steps deemed “wrong” in the two stricter conditions that are allowed in the free-est
condition. These messages explain that the step is not mathematically wrong, but that the standard strategy should be followed, as illus-
trated in Fig. 2. (We will use the term “unallowed valid variations” to denote such errors.) Finally, there is an introduction screen with
instructions at the start of each problem set. This screen shows an example of how to solve the kind of equations included in that set, with
explanations.

All conditions were implemented as example-tracing tutors (Aleven, McLaren, Sewall, & Koedinger, 2009), a type of ITS that is
relatively easy to implement, given that efficient and mature authoring tools exist, as long as the number of solution paths is limited.
Example-tracing tutor support the same range of tutoring behavior as other types of ITS, including Cognitive Tutors (Aleven, McLaren,
Sewall, & Koedinger, 2009; VanLehn, 2006). Example-tracing tutors represent the solution space for a given problem as a behavior
graph. The behavior graph maps out the solution paths for the given problem, as well as some common errors. The tutor evaluates
students’ problem-solving steps by comparing them to steps in the behavior graph. Essentially, it checks, in a flexible way, whether the
students’ solution steps correspond to any path through the graph and gives correctness feedback accordingly. It also uses the graph to
select hints and error feedback messages to present to the students. A brief overview of the example-tracing algorithm can be found in
Aleven, McLaren, Sewall, and Koedinger (2009). Example-tracing tutors can be created without actual coding. First, a tutor interface is
created through drag-and-drop techniques. Second, behavior graphs are created “by demonstration”, that is, simply by entering
solution steps in the tutor interface. The steps are recorded automatically in a behavior graph. Building example-tracing tutors with
CTAT was shown in a range of projects to be 4–8 times faster than building a Cognitive Tutor (Aleven, McLaren, Sewall, & Koedinger,
2009).

A measure of the complexity of the different tutor versions is the number of paths in each behavior graph, shown in Fig. 3. (In all
example-tracing tutors, each tutor problem has its own graph; problems of the same type have isomorphic graphs.) The strict standard
strategy condition had only a single path per graph (Fig. 3, left). The links branching off themain path represent errors and enable the tutor to
recognize these specific errors and provide feedback on them. The flexible standard strategy condition had a slightly larger number of paths
in the behavior graph (Fig. 3, center). Finally, the behavior graphs for the most complex problems in themulti-strategy condition contain 96
paths1 (Fig. 3, right).

Incidentally, although the example-tracing technology was fully adequate for implementing the tutoring behavior for all three
tutoring conditions (i.e., step-by-step guidance during problem solving), we felt that it was an optimal choice of technology only for the
flexible standard strategy condition, our middle condition, and not an ideal choice for the other two conditions. In particular, in imple-
menting the most complex tutor version (multi-strategy condition), it was a substantial and painstaking effort to capture (in a behavior
graph) the large number of different strategies that the tutor needs to support. This tutor is definitely on the far end of complexity that
the example-tracing technology can conveniently handle. For building real-world equation-solving tutors, one might prefer to use rule-
based based methods (as used in e.g., the Algebra Cognitive Tutor (Koedinger et al., 1997; Koedinger & Corbett, 2006)). However, all things
considered, we do believe that using the example-tracing technology for all conditions in our experiment was a good choice. First, in
experiments comparing different tutor versions, it is often better to keep the technology constant across conditions, so as to minimize
differences between conditions other than those whose effect one wants to evaluate. Second, the authoring tools used to create example-
tracing tutors (CTAT, Aleven, McLaren, Sewall, & Koedinger, 2009) support a range of other functionality besides the actual tutoring
1 In themulti-strategy condition, the behavior graph for equations with parentheses more difficult contains 96 solution paths. There are 7 different strategies to use (see Table 4).
Each strategy has multiple paths because 3 of the 4 operations (except combine like terms) can be done in two different ways: with or without showing intermediate steps. The
standard strategy (Table 4, left) has four operations and thus 2*1(combine like terms)*2*2¼ 8different paths. Alternative 1 (Table 4, second left) has three operations and2*2*2¼ 8
different paths. Alternatives 2 though 6 have four operations and 2*2*2*2 ¼ 16 different paths each. So there are in total 2*8 þ 5*16 ¼ 96 different paths (for the graphic repre-
sentation, see Fig. 3, right).



Table 3
All possible strategies in themulti-strategy condition for equations with parentheses. In addition to the standard strategy
(shown in the leftmost column), two alternative strategies are allowed, one of which is more efficient than the standard
strategy (alternative 1). Intermediate steps are optional in the multi-strategy condition.

Standard strategy Alternative 1 more optimal Alternative 2

2(x þ 1) ¼ 4 2(x þ 1) ¼ 4 2(x þ 1) ¼ 4
2x þ 2 ¼ 4 x þ 1 ¼ 2 2x þ 2 ¼ 4
2x ¼ 2 x ¼ 1 x þ 1 ¼ 2
x ¼ 1 x ¼ 1
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behavior that is very important in classroom experiments, such as web deployment, learning management facilities, and detailed logging
of student–tutor interactions.
4. Experiment

We conducted a study to evaluate the effect of these three levels of freedom on student learning and motivation. The study took place
during the summer holidays in two schools in a school district near Pittsburgh, with assistance from teachers at the school.
4.1. Participants

73 Students participated in the study and we obtained valid data for 57 students, 28 of whom were entering grade 7 and 29 of whom
were about to enter the 8th grade. Not included in this group of 57 are students whowere not present for all tutoring, as well as the students
who completed less than half of the problems in the ITS and students who attempted fewer than 1/4th of the problems on the post-test,
considered to be a lack of effort that rendered their post-test results useless.

Participation was voluntary. The students were recruited by means of an e-mail message sent by the principal of the school to the
parents.
4.2. Procedure

All students participated three consecutive days, 2 h a day. Students were randomly assigned to one of the three conditions described
above. They worked on the tutor during all three days, with a paper pre-test at the beginning of day 1 and a paper post-test and motivation
questionnaire at the end of day 3. Each day, the students’worked on different problem sets (see Table 1). If a student completed the daily set
of equations before the end of the session, they worked on another problem set unrelated to algebra. All tutors were deployed on our
tutoring website, Mathtutor (http://mathtutor.web.cmu.edu, see Aleven, McLaren, & Sewall, 2009).
4.3. Measures

The paper-based pre-test and post-test were designed to measure various aspects of students’ algebra learning (see Table 5). The pre-test
had 20 questions and was a subset of the post-test, which contained 42 questions. Wemade two nearly isomorphic versions of the 20 items
that were shared between pre-test and post-test, and used two test forms that were used in a counterbalanced manner across pre-test and
post-test.

We wanted to keep the pre-test small for several reasons: First, we had limited time to conduct the study. Second, we did not want to
frustrate students by assigning a test that was too difficult. Third, we expected the student performance for themore difficult items to be low
at pre-test, so assigning these items might not have yielded useful information. Both tests assessed procedural knowledge, conceptual
knowledge and flexibility in problem solving. The procedural items were divided in two categories, familiar equations (equations like those
encountered in the ITS) and transfer equations (with a feature not practiced in the ITS). Conceptual items tested the understanding of the
principles that govern algebra and of their interrelations, for example determining if two equations are equivalent. Flexibility itemsmeasure
students’ facility with, and knowledge about different (and more efficient) strategies. For example, some of these items tested if students
were able to recognize the validity and correctness of strategies other than the standard strategy. There were also items where students had
to solve an equation twice, with two different strategies. To ensure face validity, many test items were similar to assignments in middle-
school mathematics text books (Benson et al., 1991; Holt et al., 2007). Also, experienced middle-school mathematics participated in the test
construction processes and helped make sure that the test was appropriate and at an appropriate level of difficulty.
Table 4
All possible strategies in the multi-strategy condition for equations with parentheses, more difficult. In addition to the standard strategy (shown in the leftmost column), a range
of other strategies is allowed.

Standard strategy Alternative 1 more optimal Alternative 2 Alternative 3 Alternative 4 Alternative 5 Alternative 6

2(x þ 1) þ 1 ¼ 5 2(x þ 1) þ 1 ¼ 5 2(x þ 1) þ 1 ¼ 5 2(x þ 1) þ 1 ¼ 5 2(x þ 1) þ 1 ¼ 5 2(x þ 1) þ 1 ¼ 5 2(x þ 1) þ 1 ¼ 5
2x þ 2 þ 1 ¼ 5 2(x þ 1) ¼ 4 2(x þ 1) ¼ 4 2(x þ 1) ¼ 4 2x þ 2 þ 1 ¼ 5 2x þ 2 þ 1 ¼ 5 2x þ 2 þ 1 ¼ 5
2x þ 3 ¼ 5 x þ 1 ¼ 2 2x þ 2 ¼ 4 2x þ 2 ¼ 4 2x þ 2 ¼ 4 2x þ 2 ¼ 4 2x þ 1 ¼ 3
2x ¼ 2 x ¼ 1 2x ¼ 2 x þ 1 ¼ 2 x þ 1 ¼ 2 2x ¼ 2 2x ¼ 2
x ¼ 1 x ¼ 1 x ¼ 1 x ¼ 1 x ¼ 1 x ¼ 1

http://mathtutor.web.cmu.edu


Fig. 1. Screenshot of the ITS. Students solve equations with step-by-step guidance from the tutor, such as correctness feedback (correct steps colored green) and hints. Also, after
each operation students explain what they have done, using short menus in the tutor interface. In the last step the student used the freedom to not show intermediate steps. The
tutor hints (an example of which is shown in the panel at the bottom, next to the “Hint” button) are context specific and available at the students’ request. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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In order to measure aspects of students’ motivation, we used the Intrinsic Motivation Inventory (IMI), an existing and validated moti-
vation questionnaire. The IMI is based on self-determination theory, which represents a broad framework for the study of humanmotivation
and personality (e.g., Ryan,1982; Ryan, Mims, & Koestner, 1983). The IMI was developed to assess participants’ subjective experience related
to a target activity. The (standard) IMI questions can be modified slightly to fit specific activities without effecting its reliability or validity.
For example, we changed the standard question “I tried very hard on this activity” to “I tried very hard on this math workshop”.

Therewere a total of 26 questions, all involving a 7 point Likert-scale. Questions were divided in four categories, (a) Effort/Importance, (b)
Interest/Enjoyment, (c) Perceived Competence, and (d) Value/Usefulness. We added three questions about tutor-supported flexible strategy
use and the perceived freedom in the tutor.

Finally, we collected and analyzed tutor log data. These logs record all student–tutor interactions in substantial detail. We analyzed these
data using DataShop, an open repository for interaction data from educational technology (Koedinger, Cunningham, Skogsholm, & Leber,
2008). DataShop is seamlessly integrated with CTAT, the authoring tools we used to construct the equation-solving tutor. We used the
tutor log data to investigate (a) evidence of within-tutor learning, (b) students’ strategy use, and (c) the nature of students’ strategy-related
errors.

4.4. Hypotheses

Previous research lead to the hypothesis that more restricted tutors can help students to learn a well-defined, optimal problem-solving
strategy and freer tutors can bemore helpful for deeper knowledge and transfer learning. Star (2005) mentioned possible trade offs in initial
Fig. 2. An action that is flagged as “wrong” in the strict standard strategy condition (left; the step is colored red) but not in the multi-strategy condition (right). The tutor presents an
error-specific feedback message in response to such errors (shown on the left, in the hint panel at the bottom). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)



Fig. 3. Three behavior graphs for the same problem (for more difficult equations with parentheses, e.g., 2(x þ 1) þ 1 ¼ 5). From left to right: strict standard strategy, flexible standard
strategy & multi strategy.
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stages of learning between the goal of flexible use of multiple strategies and the goal of mastery of a standard algorithm and the three
versions differ in their ability to practice one or the other skill. Therefore, we expected that students in the two stricter conditions (strict
standard strategy and flexible standard strategy) would score better on solving familiar equations (i.e., equations of the type practiced in the
ITS). These students are forced to use a standard strategy and therefore they will practice this strategy extensively. On items for which
deeper understanding is needed (flexibility and transfer items) we expected better results for students in the free-est condition (multi
strategy) because students can try and practice different strategies, which may support flexible thinking and are possibly better for deeper
understanding. Moreover, we anticipated that students in the strict(er) conditions have a lower intrinsic motivation because these students
are forced to follow a defined sequence of steps, and may get bored or frustrated because alternative thinking is not accepted.
Table 5
Test items. Transfer equations, (added) motivation questions and a large part of the flexibility items were post-test only.

Test item Example Pre-test Post-test

Procedural knowledge Familiar equations 4x þ 3 ¼ 11 7 7
Procedural knowledge Transfer equations 0.2x þ 0.7 ¼ 1.1 – 4
Conceptual knowledge 3 � 4x is equivalent to –4x þ 3 true/false 8 8
Flexibility items 4x þ 2 ¼ 8 5 23

Divide both sides by 2 good move/not a good move
Subtract 2 from both sides good move/not a good move
Add 2 to both sides good move/not a good move

Intrinsic motivation questions I tried very hard on this math workshop.
I enjoyed this math workshop very much.

– 23

Added motivation questions The tutor let me solve the problem the way I wanted. – 3



Table 6
Estimated marginal means (proportion of correct items) and standard deviations (in parentheses) of all items that were repeated between pre-test and post-test.

Test Items Strict standard (18 students) Flexible standard (16 students) Multi (23 students)

Pre-test Procedural familiar 0.52 (0.31) 0.57 (0.30) 0.61 (0.27)
Conceptual 0.47 (0.28) 0.58 (0.27) 0.64 (0.23)
Flexibility 0.34 (0.27) 0.46 (0.29) 0.45 (0.24)

Post-test Procedural familiar 0.64 (0.26) 0.63 (0.24) 0.66 (0.41)
Conceptual 0.60 (0.20) 0.55 (0.22) 0.66 (0.20)
Flexibility 0.33 (0.24) 0.48 (0.22) 0.43 (0.25)
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5. Results

Two graders graded every pre- and post-test. All items were graded as either correct or incorrect. Tables 6 and 7 show the means and
standard deviations. Cronbach’s awas 0.76 for the pre-test and 0.87 for the post-test, indicating acceptable to good reliability for the algebra
test instrument.

To analyze the learning gains from pre-test to post-test, as well as differences between conditions in these learning gains, we used
repeated measures ANOVAs (with factors “time” and “condition”). These analyses included only the items that were repeated between pre-
test and post-test (i.e., on the 20 questions that were essentially the same in the pre- and post-test). Procedural learning gain is measured
with familiar equations only (transfer equations were post-test only). On familiar equations, there was a significant main effect for test
F(1,55)¼ 6.235, p¼ 0.016. Students show significant improvement from pre- to post-test. On the conceptual items, students did not improve
significantly from pre- to post-test. Likewise, therewas no improvement on the subset of flexibility items that were included in both the pre-
test and the post-test. (Most flexibility items were asked only during the post-test, so learning gain on these types of items was not
measured.) There were no reliable differences between the conditions in leaning gain on familiar equations and on conceptual items.

To analyze differences between the conditions at the post-test, we used one-way ANOVAs. (This analysis includes the 22 items that
appeared only on the post-test.) With respect to algebra learning, there were no significant differences between the conditions on transfer
and (post-test only) flexibility items. With respect to motivation, there were no significant differences between the conditions on the
motivation questionnaire and the questions about perceived freedom. Table 8 shows the means and standard deviations of the motivation
questionnaire.

In addition to analyzing the data on learning and motivational outcomes, we analyzed the tutor log data. As mentioned, these data
include all student actions and tutor responses. First, we studied whether the log data provide evidence of within-tutor learning, to
corroborate the learning gains established by the pre-test/post-test analysis. As is customary in ITS research, we analyzed within-tutor
learning by analyzing the learning curves (Koedinger et al., 2008, 2011; Stamper et al., 2011). The curves “describe performance at the
start of training [and] the rate at which learning occurs .” (Koedinger & Mathan, 2004). They visualize how student performance changes
over successive practice opportunities within the tutor, subdivided by the knowledge components that make up the overall skill (see Fig. 4).
The learning curves are based on a knowledge component model that identifies the detailed components that make up equation-solving
skill. This model was identified based on cognitive task analysis, as is customary in ITS research and development. To illustrate the fine
grain size of these knowledge components, examples of knowledge components are “add a constant term to both sides” or “subtract
a variable term from both sides”. The empirical learning curve shown in Fig. 4 (solid line) summarizes the log data: it shows, for each
opportunity, the percentage of students who did not succeed on their first attempt (averaged over all knowledge components). To better show
the trend in the empirical learning curve, a predicted learning curve was obtained by fitting an Additive Factor Model2 (Cen, Koedinger, &
Junker, 2007) to the learning curve data. It is smoother than the empirical learning curve because much of the noise is filtered out by
applying the model.

For all skills together the learning curve decreases, as shown in Fig. 4. We used logistic regression (a linear mixed effect model) to analyze
the predicted learning curve. The slope of this curve is significantly different than 0 (p < 0.001). Thus, the learning curves indicate that
students’ skill of solving equations improves while working with the tutor, corroborating the learning gains observed from pre- to post-test.

We also analyzed the log data to investigate the range of strategies used by the students during their work with the tutor. Specifically, we
looked at how frequently students usedminor variations andmajor variations of the strict standard strategy, in the conditions inwhich these
variations are allowed. As mentioned, we identified two different types of minor variations with respect to the strict standard strategy. First,
in the strict standard strategy condition, the students are required to write out intermediate steps, as defined above. In the other two
conditions, these intermediate steps may be omitted. In 83% of the steps where students had the freedom to either show or omit inter-
mediate steps, they did show them. In 17% of the steps, therefore, students followed minor variations by omitting the intermediate steps. A
second type of minor variation pertains to the order inwhich double move steps are executed. In this study, double move steps occur only in
multi-step equations. In the strict standard strategy conditions, students must move the smallest variable term first, in the other condition,
students have three more options. On 62% of the multiple step equations (e.g., 3x þ 1 ¼ 2x þ 3) the students started by moving the smallest
variable term, as is required in the strict standard strategy. On 38% percent, therefore, they followed minor variations. Thus, small variations
within the standard strategy were used with some regularity, although in a minority of the cases in which they could be used.

We also looked at the frequency of major variations of the strict standard strategy, or rather, strategies other than the standard strategy.
Such strategies were accepted only in themulti-strategy condition. In this study, different (and more efficient) strategies are only possible in
2 With the Additive Factor Model algorithm (AFM), a logistic regression is performed over the “error-rate” learning curve data. The AFM uses a set of customized
Item-Response models to predict how a student will perform for each skill on each learning opportunity. Here, a standard regression bounded between 0 and 1, attempts to
find the best-fit curve for error-rate data, which also ranges between 0 and 1. More information about the model can be found in Cen et al. (2007) and on the DataShop
website (http://pslcdatashop.org).

http://pslcdatashop.org


Table 7
Estimated marginal means (proportion of correct items) and standard deviations (in parentheses) of all items that were only on the post-test.

Items Strict standard (18 students) Flexible standard (16 students) Multi (23 students)

Procedural transfer 0.15 (0.21) 0.28 (0.31) 0.30 (0.32)
Flexibility 0.53 (0.15) 0.60 (0.20) 0.60 (0.16)
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the two types of equations with parentheses. In only 4% of the equations with parentheses (e.g., 2(xþ 1)¼ 4) did students use a strategy that
is different from (and more efficient than) the standard strategy. In 9% of the difficult equations with parentheses (e.g., 2(x þ 1) þ 1 ¼ 5),
students used strategies other than the standard strategy. However, the more efficient strategy was not used. In sum, major variations were
rarely used, even when the (multi-strategy condition) tutor allowed them.

Finally, we looked at how frequently the tutor disallowed mathematically valid strategy variations in the two restricted conditions (i.e.,
marked, as wrong, student actions that would be allowed in the free-est condition – this analysis could be viewed as the flip side of the
previous analysis; rather than looking at allowed deviations from the strict standard strategy in conditions in which these deviations are
allowed, we look at instances where reasonable deviations are disallowed). These types of “errors” occurred mostly because students tried
minor variations of the standard strategy, especially on equations involving double move steps. Disallowed valid double move operations
account for 9.2% of all errors in equations with double move operations. 1.1% of all errors were for not showing intermediate steps, another
form of valid minor variation that was not allowed in the strictest condition. Disallowed valid major strategy variations were very rare (i.e.,
student use of major alternative strategies in the conditions in which they were not allowed). They account for only 1.4% of errors in
equations for which multiple strategies were possible. Overall, the tutor disallowed more mathematically valid strategy variations in the
strict standard strategy (m ¼ 6.67, sd ¼ 4.03) than in the flexible standard strategy (m ¼ 0.75, sd ¼ 1.18), t(20.242) ¼ 5.948, p < 0.001.

6. Discussion

Students in all conditions learned from the equation-solving tutor, as evidenced by pre/post learning gains on the types of equations that
students solved with the tutor, as well as the declining errors rates seen in the learning curves extracted from the tutor log data. To our
surprise, however, offering students more freedom during problem-solving practice had no discernible effect on their learning gains,
intrinsic motivation, or even their perceived level of strategy freedom. Our analysis of the tutor log data indicates that students use the
freedom that is offered by the two freer versions only to a limited degree. Small variations within the standard strategy were used regularly,
but major variations (i.e., strategies other than the standard strategy) were rarely used, even on equations that are somewhat inviting of
such strategies, and even in a tutor condition that allowed such variations.

The lack of strategy variations across conditions explains the lack of differences in the main outcome variables (learning, motivation,
perceived strategy freedom). Given that there was virtually no difference between the students’ problem-solving strategies in the different
conditions, onewould not expect to see differences between the conditions in these variables. The finding that students in our study did not
explore the different strategies on their own is consistent with those of several math education studies in algebraic equation solving (Alibali,
1999; Star & Rittle-Johnson, 2008).

It is likely that the students’ tendency to stick to the standard strategy, evenwhen they have the freedom to use other strategies, reflects
their prior algebra instruction: American middle-school math textbooks, and quite possibly American middle-school math teachers,
emphasize this strategy. The restricted tutor versions therefore may have matched their prior instruction particularly well (as was our
intention as we designed the tutor, as described above). However, we find it hard not to view the results as implying (or at least suggesting)
that students’ natural tendency is to not explore alterative strategies on their own, but to stick with known methods. It is possible that
students do not realize that it is useful to search formultipleways of solving a problem (and find the best way), althoughwe should point out
that in this study, there was no particular incentive to do so. It was possible to solve all equations in this study with the standard strategy.
Trying alternatives would probably make the task harder. It is quite possible that if the participants, as part of their prior instruction, had
been used to greater strategy freedom, or had been exposed more to the fact that linear equations can often be solved in multiple ways, the
result of the experiment may have been different. As it stands, however, the results are consistent with prior studies that found that a focus
on mathematical understanding as being able to see connections between multiple ways of doing things is not prevalent in much math-
ematics teaching. Some of this work is discussed in the introduction section (e.g., Ma, 1999; Stigler & Hiebert, 1999).

Let us return to the question that motivated the research: Does the complexity needed in ITS architectures in order to support multi-path
problems pay off? Our short answer is: Yes, it does, although the evidence was not as overwhelming as we thought it would be. The
experiment showed distinct advantages for supportingminor strategy variations, and the architectural complexity needed to support minor
variations is no different from that needed to support major alternative strategies (e.g., both need behavior graphs with multiple branches;
or production rules, or constraints). Support for this conclusion comes primarily from the tutor log data.

Although there were no differences in learning gains or motivational outcomes between the conditions, the tutor log data did show
advantages for the more flexible conditions, in particular, the flexible standard strategy tutor. The tutor log data indicate that students do use
minor variations within the standard strategy. Students omitted intermediate steps in 17% of the cases and used an alternative double move
step in 38%. Such minor variations would be marked wrong in the strict standard strategy version of the tutor, but would be accepted in the
Table 8
Estimated marginal means and standard deviations (in parentheses). A score close to 1 indicates low motivation and a score close to 7 high motivation.

Motivation questionnaire Strict standard Flexible standard Multi

Effort/importance 5.48 (1.20) 5.36 (1.42) 5.53 (1.22)
Interest/enjoyment 4.38 (1.27) 3.71 (1.13) 3.78 (1.30)
Perceived competence 4.97 (0.92) 4.86 (1.14) 5.35 (1.55)
Value/usefulness 5.29 (1.33) 4.42 (1.74) 4.92 (1.45)



Fig. 4. The predicted error decreases over the learning opportunities.
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other tutor versions. Disallowed valid strategy variations were more frequent in the strict standard strategy than in the flexible standard
strategy (and the difference was statistically significant). Although the absolute number of valid strategy variations flagged as errors in the
stricter tutor conditions was relatively small, most likely this number underestimates students’ natural tendencies to use minor or major
variations of the standard strategy. It reflects not only these tendencies but also the students’ inclination to follow the tutor’s advice. (E.g.,
after being exhorted by the tutor to include intermediate steps, students are more likely to do so in subsequent steps.) With respect to
students’ use of major strategy variations, the different strategies allowed in the free-est of the three conditions (i.e., the multi-strategy
condition) were hardly used.

It may be clear from this analysis that in early algebra learning, a strict single-path tutor is too limiting, as expected, but, much more
surprisingly, a fully flexible multi-path tutor appears to be more than is needed, at least to accommodate students’ natural strategic
tendencies (but see the discussion below). The downside of a strict single-path tutor is that many errors are flagged that, strictly speaking,
are not errors (i.e., they aremathematically valid strategy variations). It is important to avoid such spurious errors. Novices face a challenging
task in learning equation solving, or any other complex cognitive skill. This task should not be made even harder by unnecessarily flagging,
as incorrect, inconsequential deviations from a standard strategy. Further, an ITS that is perceived to be overly strict may not be accepted by
teachers. Therefore, there are good reasons to prefer flexible standard strategy over the strict standard strategy condition: students do use the
freedom that is built in, they learn important algebra skills, and the development time is reasonable. Put differently, even for beginning
algebra learners, a tutor that supports minor strategy variations is preferred over one that strictly enforces a standard strategy. The study
therefore provides support for this source of architectural complexity in ITS, although not as overwhelmingly as hypothesized.

It is harder to find support in our data for a fully flexible tutor, compared to one that allows a standard strategy and minor variations.
Students in the multi-strategy condition did not use multiple strategies, even though the tutor allowed them to do so. Apparently, merely
offering the flexibility to usemultiple strategies does notmean that studentswill take advantage of this flexibility.Wewould however strongly
caution against an implication that tutorswith a limited amount of freedom are always sufficient. A tutor that supports only a standard strategy
and its minor variations may be helpful early on during algebra instruction, when the focus is on acquiring basic skills and understanding. It is
very likely however that systems that support multiple strategies are necessary in order for students to develop genuinely robust and flexible
problem-solving skill. As discussed, strategic flexibility (i.e., the ability to solve equation in multiple ways, preferably with the most efficient
method) is an important aspect of skill and understanding in many domains, including algebra (Alibali, 1999; Hatano & Inagaki, 1986; Star &
Rittle-Johnson, 2008; Star & Seifert, 2006) and can probably not be mastered with a tutor that offers only limited freedom. The current study
strongly suggests that allowing strategy freedom in an ITS in itself is not enough to improve students’ strategic flexibility. Therefore, an ITS
geared toward fostering strategic flexibility will need to do more than allow multiple solutions. It may need to actively support students in
exploring and comparingmultiple solutions (cf. Ainsworth et al.,1998; Alibali,1999; Star & Rittle-Johnson, 2008), or itmay have to ask students
to solve the same problem multiple times, with different strategies (cf. Ainsworth et al., 1998).

Our investigations of strategy freedom during tutored problem solving have some bearing on the bigger debate in the educational
psychology literature on whether discovery-oriented approaches or more structured (or direct) instructional approaches are more
educationally effective (Dean & Kuhn, 2006; Koedinger & Aleven, 2007). Several researchers claim that students learn with greater
understanding when they discover their own procedures instead of only adopting instructed procedures (Von Glasersfeld, 1995). Others
claim that direct instruction is better, partly because discovery learning can overload working memory, or because discovery learning is
inefficient, or does not lead to good solutions in the first place (Klahr & Nigam, 2004). Much empirical research is still needed to settle this
question (Kirschner, Sweller, & Clark, 2006). The current work does not address this question head on, because it focuses on comparing
different conditions that all fall within the realm of tutored problem solving. That is, the current study does not have a discovery learning
condition; even the free-est condition is relatively “structured.” Nonetheless, a key implication of the current work, namely, that students
need some help in taking advantage of freedom offered during tutored problem solving, appears to mirror findings in the literature on
discovery learning, namely, that pure discovery learning is challenging for students, and that certain carefully designed forms of guidance
during discovery learning are helpful, such as “structured invention activities” (Kapur, 2008; Roll, Aleven, & Koedinger, 2010; Schwartz,
Chase, Oppezzo, & Chin, 2011; Schwartz & Martin, 2004), or tutoring support in the context of learning with simulations (Borek,
McLaren, Karabinos, & Yaron, 2009; de Jong & van Joolingen, 1998) or experimental design activities (Siler, Klahr, & Price, 2012).

We see several key contributions for the current work. First, to the best of our knowledge, the work is the first to investigate the
educational value of offering strategy freedom during (tutored) problem-solving practice with an ITS. Strategy freedom is often assumed to
be a necessary element in ITS, but this assumption has not been empirically tested. We found substantial evidence to suggest that
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supporting minor strategy variations is indeed a good thing to do, since it helps reduce the occurrence of valid strategy variations marked
wrong by the system, even if in the current study it was not shown to enhance students’ learning results. We found no evidence that
supporting major strategy variations is equally useful, but the current work should not be the last word on this issue, as discussed.

A second contribution of the work is the insight it gives in students’ strategy use during algebraic problem solving, based on analysis of
tutor log data. We are not aware of prior work in the ITS or learning sciences literature that provides this kind of analysis. The surprising
insight from this analysis is that the range of students’ strategies is quite limited. Asmentioned, to a degree, this findingmay reflect students’
specific instructional background (e.g., the fact that theymay have learned the standard strategy), but it may also reflect a general reluctance
to explore, possibly due to prior instruction not supportive of exploration.

A third contribution of the work is that it draws attention to an issue that so far has not been discussed much in the literature on ITS and
advanced learning technologies, namely, the pros and cons of supporting multiple paths within tutor problems. As mentioned in the intro-
duction, ITS developers and theorists (e.g., Koedinger & Corbett, 2006; VanLehn, 2006) often assume that this capability is desirable, and have
long built it into their systems. The current work is to the best of our knowledge the first that provides empirical support for that important
assumption. The work also provides some nuance with respect to theories about desirable (system) behaviors in ITS, in particular the notion
that ITS are effective because they provide support at the step level (i.e., they break down problems into steps and help students with the
steps), rather than at the problem level (e.g., VanLehn, 2006, 2011). The current work suggests that such step-by-step guidance should be given
in a flexible manner, while offering freedom to students to pursue different strategies within a given problem. In other words, the work
suggests that the effectiveness of ITS derives at least in part from their ability to provide step-by-step guidance with respect to multiple paths
through a given tutor problem. The work therefore validates a source architectural complexity in ITS, namely, the ability to support multiple
paths. It is important to note that the architectural features needed to support minor strategy variations within tutored problem solving (i.e.,
within an ITS) are no simpler than those needed to supportmajor strategy variations. The knowledge represented within the architecture may
be simpler (e.g., fewer rules needed, fewer paths in behavior graphs, etc.), but the fundamental tutoring approaches embedded in these
systems (model-tracing (Koedinger & Corbett, 2006), example-tracing (Aleven, McLaren, Sewall, & Koedinger, 2009), constraint matching
(Mitrovic et al., 2002)) must be capable of interpreting student behavior with respect to alternative paths.

A recommendation that follows from this work is that ITS designers consider gradually introducing complexity into their tutors, rather
than assuming from the start that a fully flexible tutor is preferred. Student prior knowledge and the educational goals of the ITS should be
taken into account when deciding how much freedom to support. Early pilot studies can start with versions that may be simpler than
commonly thought, and introduce complexity gradually. It may even be reasonable to use relatively simple versions in classrooms (though
perhaps not the very simplest version) in the early stages of learning a complex skill, in line with Star’s (2005) observations. Further,
researchers should focus on investigating how ITS can support the development of strategic flexibility. For example, ITS may need to be
designed so that students compare and contrast strategies and learn to select the most appropriate ones for any given problem. In pursuing
these goals, it will be interesting to adopt and apply the tutor log analysis technique introduced in this work, namely, to analyze how much
students use the freedom offered by the ITS. The use of open data repositories with log analysis tools such as the DataShop (Koedinger et al.,
2008) will be quite helpful. Knowing more about students’ strategy use in tutors may ultimately lead to better tutors, tutors aimed at
supporting flexible strategy acquisition.

7. Conclusion

We investigate the value of supporting strategy freedom in an ITS, systems that provide step-by-step guidance during problem-solving
activities. Greater strategy freedom requires a more complex systems architecture than supporting only a single solution path through
a tutor problem. It is therefore important to ask whether the greater architectural complexity has benefits with respect to student learning
and motivation.

In our study, an ITS helped students improve their equation-solving skill. However, allowing minor or major strategy variations did not
make a difference in learning gain, motivation or perceived strategy freedom, compared to strictly enforcing a standard strategy with which
students were familiar, without allowing any variations. Analysis of tutor log data turned out to be a useful tool for analyzing students’
strategy use. It revealed that students tended to use the standard strategy and its minor variations, but that major strategy variations were
very rare. Thus in complex problem-solving activities, merely giving student the freedom to use whatever strategy they like does not
necessarily pay off; it does not appear to lead to exploration of strategies other than those on which students’ prior instruction presumably
has focused.

On the basis of these results, we conclude that allowing minor strategy variations during tutored problem solving is useful, simply
because students use them frequently. If minor strategy variations are not allowed, many student attempts at solving stepswould bemarked
as errors, even though they are actually valid variations. It is possible (and we would be concerned) that such unnecessarily flagged errors
would be detrimental to learning in other populations of students. On the other hand, the results do not provide support for a tutor that
supports a wide range of major strategy variations during tutored problem solving, at least not without additional support for helping
students make use of this freedom. The students in the study did not use major strategy variations, quite possibly as a result of having
learned (prior to the experiment) the standard strategy as a safe and sound way to solve linear equations. They did not feel restricted by the
stricter versions of the tutor. With respect to the goal of learning to solve linear equations reliably, then, it may be that a tutor that supports
a standard strategy with minor variations is sufficient. However, a multi-strategy tutor may still be quite useful, possibly even necessary, for
the more ambitious and desirable goal (not attained in the current experiment) of supporting students in acquiring strategic flexibility.

The study further suggests that allowing strategy freedom in an ITS (and perhaps during problem-solving practice more generally) is not
sufficient to improve strategic flexibility. In order to do so, the ITS may need to actively support students in exploring and comparing
multiple solutions (cf. Alibali, 1999; Star & Rittle-Johnson, 2008). For example, the tutor can give the student instructions and hints for more
optimal strategies, or involve them in comparing solutions. To support these kinds of activities, a multi-strategy tutor could well be very
useful or even necessary.

In sum, the experiment provided support for the notion that ITS should support multiple solutions strategies during tutored problem
solving, but also pointed to the need for further research into how they can help students make optimal use of this freedom.
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