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Abstract

This article discusses how sequential sampling models can be integrated in a cognitive architecture.

The new theory Retrieval by Accumulating Evidence in an Architecture (RACE ⁄ A) combines the

level of detail typically provided by sequential sampling models with the level of task complexity

typically provided by cognitive architectures. We will use RACE ⁄ A to model data from two variants

of a picture–word interference task in a psychological refractory period design. These models will

demonstrate how RACE ⁄ A enables interactions between sequential sampling and long-term declara-

tive learning, and between sequential sampling and task control. In a traditional sequential sampling

model, the onset of the process within the task is unclear, as is the number of sampling processes.

RACE ⁄ A provides a theoretical basis for estimating the onset of sequential sampling processes during

task execution and allows for easy modeling of multiple sequential sampling processes within a task.

Keywords: Cognitive architecture; ACT-R; Accumulator model; Sequential sampling process;

Drift diffusion model; PRP ⁄ dual-task; Picture–word interference

1. Introduction

As theories about cognitive processing become more complex, the need for formal mod-

eling of cognition increases. Because of this, many recent results in cognitive psychology

are formulated by formal modeling of the hypothesized processes. Two of the most influen-

tial research paradigms in the field of formal modeling of cognition are the sequential sam-

pling framework (e.g., drift diffusion model, Ratcliff, 1978; accumulator model, Vickers,
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1970; and related connectionist models, e.g., Usher & McClelland, 2001) and cognitive

architectures (e.g., ACT-R, Anderson, 2007; EPIC, Meyer & Kieras, 1997a; Soar, Newell,

1990). However, the classes of problems addressed by these two paradigms differ widely.

Sequential sampling modelers have traditionally focused on tasks in which participants are

required to select a response based on a particular feature of the stimulus (or sometimes a

combination of features). These models often provide very detailed accounts of one particu-

lar task. However, these tasks are typically quite simple because sequential sampling models

cannot easily account for complex interactions between multiple sampling processes.

In contrast, the cognitive architecture framework has a tradition in modeling behavior that

requires the interaction of multiple aspects of cognition. Cognitive architectures focus more

on unification and generalization and models of very complex behavior. Because of the

focus on generalization, cognitive architectures sometimes ignore the level of detail required

to model low-level decision-making behavior. In this work we want to integrate these

research lines to be able to address simple decision-making behavior in the context of com-

plex tasks.

The most prominent success of the sequential sampling framework is the ability to

account for both response speed and accuracy within a single theoretical framework

(Ratcliff & Smith, 2004). In particular, sequential sampling models provide an elegant

explanation for the speed–accuracy tradeoff (Luce, 1986; Wickelgren, 1977) often

observed in decision-making behavior. In addition, sequential sampling models often

account for the shape of response time distributions (e.g., Ratcliff, 1978), rather than just

the mean response time and the associated variance. A third important accomplishment of

sequential sampling is the ability to account for response time distributions for both correct

responses and incorrect responses. Often people make particular errors in decision making,

and sequential sampling provides explanations for the mechanisms that result in fast or

slow errors.

Sequential sampling models have provided much insight in the behavioral correlates of

decision making. However, computational models that are derived from these theoretical

accounts often only model the decision-making process itself. As such, these models fail to

appreciate that retrieving declarative knowledge (needed for the decision) does not stand

alone but is always part of the execution of a particular task. This aspect becomes especially

important when the complexity of the task under scrutiny is increased. For example,

a sequential sampling model of a perceptual decision task may be relatively straightforward

(e.g., Forstmann et al., 2008; Ratcliff & McKoon, 2008), but performing multiple sequential

perceptual decisions as part of operating a complex system (e.g., a flight management sys-

tem, Taatgen, Huss, Dickison, & Anderson, 2008) may change performance in ways that are

hard to account for using only standard sequential sampling concepts.

In contrast, cognitive architectures have had considerable success explaining cognition in

an integrative way. This means that theories developed within a cognitive architecture are

supported by theories of other aspects of cognition. For instance, for an explanation of visual

search tasks, in which participants are asked to search an array of stimuli for a previously

presented target stimulus, it is important to include a theory of decision processes to

account for a stopping rule of the visual search, and of declarative memory to explain how
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participants retrieve the target from memory. Therefore, it makes sense to study different

cognitive phenomena within one framework, so that one theory (for instance, about visual

search) remains consistent with others (for instance, about decision making or declarative

memory).

The integration of multiple aspects of cognition becomes especially apparent when study-

ing the concurrent execution of multiple tasks (Salvucci & Taatgen, 2008). Executing a sec-

ondary task interferes in many cases with performance on a primary task, and cognitive

architectural models have provided explanations of the specific bottlenecks in the combined

task execution (e.g., Borst, Taatgen, & Van Rijn, 2010; Meyer & Kieras, 1997a). In addi-

tion, cognitive architectures often incorporate theories on the changes the cognitive system

undergoes as a result of learning (e.g., Anderson & Schooler, 1991; Laird, Rosenbloom, &

Newell, 1986; Taatgen & Lee, 2003). As a result, changing behavior in complex tasks can

be modeled as well (e.g., Anderson, Taatgen, & Byrne, 2005; Taatgen & Anderson, 2002;

Van Rij, van Rijn, & Hendriks, 2010; Van Rijn, Van Someren, & van der Maas, 2003).

Sequential sampling models have provided much insight in the behavioral correlates of

decision making. Cognitive architectures on the other hand provide a theory of task execu-

tion (Newell, 1990), but the explanation provided by these models is not always at the level

of detail of sequential sampling models. The theory put forward in this article reconciles

both approaches. In the remainder of this article, we will present an integrated theory of a

sequential sampling model and a cognitive architecture. As a starting point we will intro-

duce the cognitive architecture ACT-R (Anderson, 2007). Secondly, we will discuss those

aspects of the sequential sampling framework that are relevant for the integrated theory.

Third, we will present the integrated theory itself, called Retrieval by Accumulating

Evidence in an Architecture (RACE ⁄ A). After RACE ⁄ A has been introduced, we will dem-

onstrate its importance in two experiments that are exemplary for the kind of problems that

RACE ⁄ A is intended to address. In Experiment 1, participants were asked to perform a pic-

ture–word interference (PWI) task in which certain stimuli are repeated. In addition and at

the same time, participants were given a secondary task (this experimental design consti-

tutes a psychological refractory period [PRP] design). The PRP design enables us to tempo-

rally separate multiple stages in the execution of the PWI task. This temporal separation has

a differentiating effect on the sequential sampling processes involved in PWI. The cognitive

architecture provides a way of scheduling these processes that is not included in the default

sequential sampling framework. At the same time this type of behavior cannot be modeled

without a sequential sampling component, because such a model would lack a theoretical

account of the competitive processes involved in PWI. Experiment 1 demonstrates how

RACE ⁄ A accounts for the interaction between short-term memory processes and long-term

memory processes.

In Experiment 2, participants are again required to perform a PWI task in a PRP design.

However, this time an extra condition is included that influences participants’ behavior in

the other conditions. RACE ⁄ A provides an explanation of the response time data in terms of

the scheduling of sequential sampling processes and the way they influence each other. We

will again discuss why this pattern is hard to account for using only a traditional cognitive

architecture, or only a traditional sequential sampling model.
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1.1. ACT-R

ACT-R is a hybrid cognitive architecture in which behavior on a task can be described

by a sequence of production rule executions. The rules specify which actions may be exe-

cuted given certain conditions. If the conditional side of a production rule matches against

the current information state, then the actions associated with that rule are executed. The

current information state is represented by a set of buffers, each containing one piece of

information. Which information is present at a certain point in time in the buffers is deter-

mined by specialized modules that each process one type of information. For instance, the

visual module handles visual perception, and the motor module executes motor commands.

The declarative module is used for storing and retrieving declarative memory information,

the speech module handles the speech output, the aural module handles auditory percep-

tion, and the goal and imaginal are modules for keeping track of (sub)goals and intentions.

The modules can be regarded as theories on that particular aspect of cognition, and the

production rule system connects these theories to account for overall behavior (Gray,

2007). For example, the declarative module implements a theory of declarative memory

that is to a large extend based on Anderson’s earlier work on memory representations

(Anderson & Milson, 1989; Anderson & Schooler, 1991) and Instance Theory (Logan,

1988).

A typical ACT-R model run consists of the sequential execution of production rules. Each

production rule triggers a set of actions, which may change the buffers’ status, which in turn

may trigger another production rule. Because each action requires a certain amount of time,

the model latency is an aggregation of the timing of all actions (cf. Sternberg, 1969). This is

illustrated by Fig. 1A. Each line in the figure represents a different type of information pro-

cessing module, with the bottom line representing the production rule module. The visual

module processes the stimulus (the elephant), followed by a production rule that starts a

memory retrieval. If a fact is retrieved (in this case, the word ‘‘Elephant’’), a next produc-

tion rule triggers a vocal response. Note, however, that, although not discussed in this exam-

ple, modules may operate in parallel, so the latency is not simply the sum of the timing of

all actions. For example, the visual module may be busy processing new information, while

at the same time the declarative module may retrieve factual information. Where the mod-

ules may operate in parallel, each individual module can only execute one action at a time.

Therefore, the timing is also influenced by how the model schedules all the subprocesses

involved in executing the task (Byrne & Anderson, 2001). RACE ⁄ A copies the way ACT-R

schedules task execution. That is, a model in RACE ⁄ A also consists of a set of production

rules that are triggered when a particular state is met. In addition, RACE ⁄ A copies the pro-

cessing theories of most of the individual modules. The exceptions to this are the declarative

memory module and the visual module. These modules are extended with a new retrieval

mechanism based on sequential sampling theory. To fully appreciate the changes in the

retrieval process of ACT-R that we propose, we will first discuss how memory retrieval is

currently modeled in ACT-R.

The current ACT-R mechanism of retrieval is as follows. Each fact (called a chunk) is

represented by an activation value representing the log odds that a chunk will be needed in
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the near future. The log odds is partly determined by a component describing the history of

usage of a chunk called the base-level activation (Bi, Anderson & Schooler, 1991):

BiðtÞ ¼ ln
Xn
j¼1
ðt� tjÞ�d

 !
: ð1Þ

The base-level activation equation reflects the theory that declarative memory is opti-

mally adapted to the environment. That is, chunks that are most active are the ones that are

most likely needed, given the demands of the environment. By incorporating both the

Vocal
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Visual

TimeTime

Procedural

Vocal

Retrieval
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TimeTime
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Fig. 1. (A) Schematic representation of a simplified ACT-R model of perception and subsequent naming of an

elephant. Each horizontal line represents processing in a dedicated module. The vertical dashed line represents

the stimulus onset. (B) In a standard ACT-R model, if the word ‘‘Giraffe’’ is presented after the elephant picture,

it cannot influence the retrieval process anymore.
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frequency with which particular information is used and the recency of these occurrences,

the base-level activation predicts learning effects as well as forgetting (e.g., the power laws

of learning and forgetting; Anderson, Fincham, & Douglass, 1999). In Eq. 1, tj represents

the time of the jth presentation of a memory chunk and d is the parameter that controls

decay, which in most ACT-R models is fixed at 0.5 (Anderson et al., 2004).

In the standard conception of ACT-R, the total activation is the sum of the base-level

activation, moment-to-moment noise (e(t) in Eq. 2), and another component describing the

influence of the current context (spreading activation). The spreading activation component

in ACT-R—represented in Eq. 2 by the summation—is composed of the associative values

(Sji) of other chunks (chunks j in Eq. 2) to chunk i, weighed by Wj, representing the impor-

tance of the associated chunks:

AiðtÞ ¼ BiðtÞ þ
X
j

WjSji þ eðtÞ: ð2Þ

Currently, the assumption behind ACT-R’s spreading activation mechanism is that

chunks that are temporarily available to central cognition (i.e., chunks that are present in

the buffers) increase the probability that related chunks will be needed. The association

that exists between two chunks (Sji), reflects the pattern of co-occurrences of the two

chunks in previous cognitive processing (Anderson & Milson, 1989). For instance, in the

presence of a green stimulus in the visual buffer, the probability of retrieval of chunks that

are related to green—such as a chunk representing grass or a chunk representing the con-

cept of Ireland—increases. This is because grass and green as well as Ireland and green

often co-occur.

If a production rule fires that requests the retrieval of a chunk with a particular set of

properties, ACT-R selects the most active chunk that matches the request and computes a

retrieval latency. This default ACT-R retrieval process can be thought of as a one-shot pro-

cess. Currently, ACT-R does not have an explanation of how the retrieval behavior would

change if new and relevant information would become available during the retrieval process.

This is illustrated by Fig. 1B. If information becomes available after the retrieval process has

been initiated, a default ACT-R model would first complete that retrieval process before

considering any new information. However, from studies in which the presentation duration

of stimuli was manipulated, it is known that even for very short time intervals (<100 ms)

the current visual information state influences cognitive processing (e.g., Glaser & Düngel-

hoff, 1984; Marcel, 1983). For example, Glaser and Düngelhoff found that presenting differ-

ent kinds of words 50 ms after a picture reliably changes response times, which is a clear

indication that the retrieval time has been influenced. In addition, ACT-R does not account

for competitive effects that arise when multiple chunks match the retrieval request. Instead,

the model would just return the most active chunk (but see Van Rijn & Anderson, 2003;

Schneider & Anderson, 2011 for alternative approaches).

The RACE ⁄ A theory extends ACT-R by substituting the one-shot retrieval mechanism

by a more dynamic component that models the retrieval process. Thus, the static retrieval

model in ACT-R is substituted by one in which the activation is continuously updated.
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In addition to changes to the declarative memory module of ACT-R, RACE ⁄ A also dif-

fers from standard ACT-R in the way visual information processing is modeled. The current

visual information processing theory in ACT-R assumes that conceptual information related

to a visual stimulus is available in the visual buffer 85 ms after stimulus presentation

(Anderson, 2007). The exact mechanisms behind this process are yet unaccounted for

(although a number of mechanisms have been proposed, e.g., Fleetwood & Byrne, 2006;

Salvucci, 2001; Tamborello & Byrne, 2007). While RACE ⁄ A does not aspire to present a

definitive account of visual processing, it assumes that an evidence accumulation mecha-

nism has some access to (partial) information even before the 85 ms threshold has passed.

This information can therefore be used to model the process of retrieving stimulus-related

information (Treisman & Gelade, 1980).

1.2. Sequential sampling framework

Underlying many sequential sampling models is the idea that response options are neurally

represented by pools of neurons, the firing rates of which are inherently noisy. Therefore, to

make a decision (i.e., choose one of the options), multiple samples of these firing neurons

must be accumulated to retrieve a stable representation of the decision (for reviews, see

Smith & Ratcliff, 2004; Wang, 2008). This is often represented by racing stochastic pro-

cesses, in which each process accumulates information with a particular rate until one of the

values crosses a preset decision criterion value (see Fig. 2). Sequential sampling models are

often used to describe competitive processes in which two or more response options are in

competition. Typically, the first response option to reach the criterion value is the option that

is chosen, and the time needed to reach the criterion is the retrieval time.

An important question in the study of decision making is whether the decision criterion

consists of an absolute value (e.g., Vickers, 1970) or reflects a difference between

Starting
point

Decision
Criterion

Time

Response
option A

Response
option B

Response
option C

Fig. 2. Schematic representation of a typical accumulator model. The arrows indicate the mean drift rate for

each alternative. In this case, response option A is the first to reach the decision criterion, which is here repre-

sented by an absolute value.
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accumulators (e.g., Ratcliff, 1978). In models with an absolute decision criterion, all accu-

mulators race until one of them crosses a preset threshold value. In models with a relative

decision criterion, the decision criterion takes the value of the highest accumulator relative

to the value of all other accumulators. RACE ⁄ A will adopt a relative decision criterion

because such an implementation is most in line with the notion of activation in ACT-R,

which reflects a relative log odds of the need of a particular chunk.

A second important property of any sequential sampling model is the start point of accu-

mulation. Often this is assumed to be equal for all accumulators (as in Fig. 2), reflecting no

prior preference for any of the response alternatives, but it could also be biased toward one

of the alternatives (Morton, 1969; Ratcliff & McKoon, 1997). The start point of accumula-

tion is often considered as a free parameter when fitting data (e.g., Wagenmakers, Ratcliff,

Gomez, & McKoon, 2008) or assumed to be equal for all accumulators (e.g., Wagenmakers,

Van der Maas, & Grasman, 2007). In RACE ⁄ A the start point of accumulation is based on

the history of usage of the accumulating response options. For this, RACE ⁄ A applies the

activation values of chunks, taking into account how a priori likely it is that one of the

chunks is required for further processing (Anderson & Schooler, 1991).

A third parameter that is relevant in most sequential sampling models is the mean drift

rate. The mean drift rate represents the average speed with which a particular process accu-

mulates. Drift rate differences are often taken to represent differences between the stimuli.

For example, responses to frequent items are generally faster than responses to infrequent

items (e.g., in lexical decision tasks, Wagenmakers et al., 2008), which can be represented

by a higher drift rate for frequent items. In RACE ⁄ A, the drift will also be determined by

properties of the stimulus. In addition, as we will discuss in more detail later, the drift also

depends on associations with other chunks.

2. Retrieval by accumulating evidence in an architecture

In this section, we will develop the dynamics of the RACE ⁄ A theory. We will first pres-

ent the equations that govern the activation dynamics and show how they relate to both

ACT-R concepts and sequential sampling concepts. Next, we will show how RACE ⁄ A can

account for reaction time effects.

The accumulation process can be characterized by two equations that determine the long-

term dynamics and the short-term dynamics of the activation. The long-term dynamics of

the activation are expressed by the default base-level activation equation from ACT-R (Bi,

Eq. 1). The short-term dynamics are mediated by spreading activation from other chunks

and the presence or absence of perceptual stimuli (Ci, described below). Thus, the total acti-

vation in RACE ⁄ A is

AiðtÞ ¼ BiðtÞ þ CiðtÞ: ð3Þ

This indicates that the total activation of a chunk is the sum of the log odds of a chunk

(reflected by Bi) and the accumulated evidence for that chunk (reflected by Ci). Note that
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this new computation of activation (Eq. 3) includes a base-level activation component (Bi)

and a context component (Ci), analogous to the original ACT-R activation equation (Eq. 2).

The accumulation process continues until a certain decision criterion is reached. The

duration of the accumulation process is defined as the time from a request for a retrieval of

information (scheduled by a production rule) until the decision criterion is reached.

Similar to most sequential sampling models, the short-term activation dynamics can be

represented by a starting point, a drift, and a decision criterion, which we discuss below.

2.1. Starting point

The starting point of the accumulation reflects the prior probability that a chunk is needed

(Morton, 1969; Ratcliff & McKoon, 1997). This is represented by the current activation

level of a chunk at the onset of retrieval. This can involve the usage history of a chunk,

reflected in the base-level activation, as well as short-term activation. Chunks with a high

base-level activation start the accumulation process at a higher starting point and are thus

more likely to be retrieved from memory. In addition, a retrieval that is scheduled shortly

after another retrieval is still influenced by the activation that accumulated during the previ-

ous retrieval. The amount of residual activation depends on a decay parameter discussed in

the next section. This approach has a history in sequential sampling models (Morton, 1969;

Ratcliff & McKoon, 1997) in which sometimes prior probabilities are considered as starting

points of the accumulation process. The approach also has a strong link to activation model-

ing in traditional cognitive architectures. ACT-R, for example, incorporates a rational analy-

sis of memory (Anderson & Schooler, 1991), meaning that activation in ACT-R reflects a

higher probability of retrieval of frequently used chunks (as well as recently used chunks).

2.2. Drift

Drift in RACE ⁄ A is a function of stimuli in the environment, as well as the currently

active internal chunks, such as declarative facts. All facts and stimuli, which will be collec-

tively referred to as sources of activation, continuously spread excitatory activation toward

associated chunks. This means that chunks with more sources of activation (more evidence)

or with sources with more activation (‘‘stronger’’ evidence) accumulate faster than chunks

with less sources of activation or sources with less activation. In the absence of evidence for

a particular chunk, the short-term activation will decay.

We incorporated decay, spreading activation, external activation from stimuli, and a

noise term in Eq. 4:1

dCi ¼ ½�aCi þ b
X
j

SjiAj þ c
X
k

SkiEk þ ei�dt: ð4Þ

Eq. 4 captures the dynamics of short-term activation of one chunk (chunk i) over time.

The first term in Eq. 4 represents the decay of short-term activation. The speed of decay

is controlled by a parameter a. In the absence of spreading activation, the short-term
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activation of a chunk i will decay to 0. Because the total activation of a chunk is the sum of

the short-term activation and the base-level activation (Eq. 3), the activation will decay to

its base level.

The second term in Eq. 4 represents spreading activation from other chunks. Spreading

activation is the sum of the activation of other chunks (Aj, which is the sum of Bj and Cj),

weighted by the associations that exist with chunk i (Sji). The spreading activation term is

scaled by a factor b.

The third term in Eq. 4 represents the influence of external factors (i.e., stimuli, Ek). Of

importance is that a stimulus will only activate a subset of chunks (i) that are related to the

stimulus (Ski). The external activation term is scaled by a factor c. Because it is often hard to

disentangle the influences of these different parameters, in practice c will be estimated as 1

and Ski will be estimated as either 1 or 0, indicating the presence or absence of a relation

between chunk and stimuli. All stimulus-related variance will thus be accounted for by esti-

mating Ek.

Finally, noise over the activation value of a chunk is expressed by a noise sample ei that

is drawn at each time step from a logistic distribution. The logistic distribution was chosen

here because it approximates the normal distribution but is computationally simpler

(cf. Anderson & Lebiere, 1998, p. 64).

To summarize, the decay parameter a together with scaling factors b and c determine the

drift of the chunks in the system. The chunk that receives the most spreading activation

(scaled by b and c) from sources of activation will (in the absence of noise) be the first to

reach the decision criterion.

Eq. 4 resembles—and is in fact derived from—the leaky competitive accumulator model

(LCAM; Usher & McClelland, 2001). In LCAM the activation of a unit (a chunk) depends

on an input term, a decay parameter (‘‘net leakage’’), and lateral inhibition between the

competing units. Eq. 4 also contains a term for external input (c
P

SkiEk) and a decay term

(a). The crucial difference between the two models is that RACE ⁄ A assumes an excitatory

spreading activation term (b
P

SjiAj), whereas LCAM assumes an inhibitory term. This dif-

ference reflects our different choice of decision criterion. Where Usher and McClelland

(2001) used an absolute criterion to terminate the accumulation process, RACE ⁄ A uses a

relative criterion. This warrants different interactions between the units, as discussed below.

2.3. Decision criterion

We chose a relative decision criterion for RACE ⁄ A. This choice is motivated by consider-

ations of Bayesian optimality, in line with standard ACT-R. We assume that a memory retrie-

val is optimal if the expected retrieval time is minimized for a particular error rate (Brown,

Steyvers, & Wagenmakers, 2009). Thus, the system continuously checks if there is enough

evidence for one of the retrieval options that the probability that that particular option is cor-

rect is on or above the error rate. Optimality in this sense means continuously computing the

posterior probability for each option until one of these exceeds a criterion value (Dragalin,

Tartakovsky, & Veeravalli, 1999).2 As in all sequential sampling models, the time needed to

exceed the criterion value constitutes the retrieval time (e.g., Ratcliff, 1978).
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Because activation values in RACE ⁄ A (and ACT-R) represent the log odds that a particu-

lar chunk is needed or relevant, the posterior probability for each chunk can be retrieved by

exponentiating the activation values:

eAiP
j

eAj
� h: ð5Þ

Besides being optimal, this formulation has a number of benefits over an absolute deci-

sion criterion. A first benefit is that the posterior probability decreases if the associative

value between chunks increases. This means that competition resulting in slower reaction

times can be modeled without resorting to an explicit inhibitory mechanism. This is in line

with the rational analysis framework incorporated in ACT-R: Chunks that often co-occur

have a strong positive association (Anderson & Milson, 1989) and not a negative one.

Therefore, items that often co-occur but have a slowing-down effect on each other can be

accounted for (Van Maanen and Van Rijn, 2007a, 2007b). A second benefit is that this for-

mulation of a decision mechanism has an explicit neural implementation. Basal ganglia

circuits that are involved in neural decision making have been shown to compute activation

values for a certain decision criterion in a similar way as RACE ⁄ A (Bogacz & Gurney,

2007; Zhang & Bogacz, 2010). In particular, Bogacz and colleagues hypothesize that basal

ganglia implement optimal decision making by constantly monitoring the ratio of activa-

tions until the activation of one of the alternatives crosses a preset criterion value. The math-

ematical model they propose for this process implements Eq. 5. Therefore, RACE ⁄ A can be

considered neurally plausible.

2.4. Activation dynamics

Before discussing memory retrievals using RACE ⁄ A in the broader scope of complex

task execution, it is important to understand the activation dynamics of this model. In this

section, we present the results of a set of simple simulations of how RACE ⁄ A behaves under

varying circumstances. In these simulations, two unrelated chunks are competing for retrie-

val from declarative memory. Because there are only two unrelated chunks in the system,

Eq. 4 can be expressed as

dCi ¼ ½�aCi þ SjiEj�dt: ð6Þ

In Eq. 6, j represents the stimulus associated with chunk i, and Ej the strength of that

stimulus. For tractability, we assume, here, that the base-level activation is a constant value.

Because in this simulation the chunks are unrelated, the SjiAj term from Eq. 4 is zero, which

means that the activation growth in the model does not depend on spreading activation,

which has therefore been excluded from Eq. 6. For explanatory purposes, we set the noise

component to zero.

Fig. 3A (left) presents how activation develops over time for the default case, in

which both chunks have the same starting point, and one stimulus is present that
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activates one chunk. That chunk accumulates activation, whereas the other remains at

the value that is determined by the base-level activation. Fig. 3A (right) presents the

probability for both chunks, with the dotted horizontal line indicating when the decision

criterion (h) was met. Because there are two equally probable chunks in this competi-

tion, the probability at the start of the process is 0.5 for both chunks, but it quickly

changes in favor of the accumulating chunk, until it crosses the decision criterion, and

a choice is made.
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Fig. 3. RACE ⁄ A dynamics for four typical retrieval processes without spreading activation. Left: activation

of two chunks. Right: posterior probabilities for two chunks. The vertical dotted lines indicate the retrieval

times. See text for a description of panels A through D. RACE ⁄ A, Retrieval by Accumulating Evidence in an

Architecture.
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Fig. 3B presents the activations and probabilities for two chunks, one of which receives

activation from a stimulus, but the other chunk (the non-target chunk) has a higher starting

point. This is for instance the case if the non-target chunk has a higher activation because it

has been recently retrieved. The activation of the non-target chunk will decay to its base-

level activation, while the activation of the target chunk increases. Under these conditions,

retrieval of the target chunk takes longer because the initial posterior probability for the acti-

vated chunk is smaller due to the higher initial activation of the non-target chunk.

In Fig. 3C, a situation is depicted in which one chunk is activated at a later moment in

time than the other. This has been hypothesized to represent PWI experiments in which the

presentation the two stimulus dimensions (picture and word) are temporally separated (Van

Maanen & Van Rijn, 2007a). Even though the retrieval process of the first chunk has already

been initiated, activation of the second chunk at a later moment in time influences the pos-

terior probability and thus increases the retrieval time of the first chunk.

The last simulation addresses a condition in which two chunks are activated, but one of

the chunks is only activated for a short duration (Fig. 3D). This is similar to masked priming

experiments in which one stimulus is only available for a short duration and thus only has a

short interval in which to activate related concepts, while another stimulus remains present

for a longer interval (Van Maanen & Van Rijn, 2007b). Initially, both chunks accumulate,

because both receive activation from a stimulus. After one of the stimuli disappears, the

activation of one of the chunks decays, but the other chunk accumulates further. Again, the

retrieval time is increased as compared to the default situation in Fig. 3A, because the acti-

vation of the decaying chunk still influences the posterior probability. The simulations

depicted by Fig. 3C,D are difficult to explain with the traditional approach to memory in

cognitive architectures, because they simulate conditions in which the sources of activation

change during the retrieval process, thereby altering the accumulation of evidence and the

retrieval time. Because of the static nature of most cognitive architectures, any information

that becomes available during the retrieval process would not be able to influence the pro-

cess. Therefore, these kind of short-term effects on cognitive processing discussed here are

hard to include in a traditional cognitive architectural model.

To summarize, the posterior probability for a particular chunk is negatively accelerated

by the activation of other chunks that compete with that chunk for retrieval from declarative

memory. This competitive process results in an increase in retrieval time.

In all simulations presented in Fig. 3 the chunks were not associated. If the chunks are

associated, the retrieval times are longer (Fig. 4). Under these conditions, both chunks

accumulate due to spreading activation from the other chunk (cf. Fig. 4A with Fig. 3A).

This ‘‘co-activation’’ of the chunks results in slower accrual of the posterior probabilities,

and therefore a longer retrieval (Fig. 5). Many effects have been associated with a differ-

entiation of associative strength, including the semantic gradient effect found in PWI stud-

ies (e.g., W. R. Glaser & Düngelhoff, 1984; Klein, 1964; Rayner & Springer, 1986; Smith

& Magee, 1980) and the fan effect (Anderson, 1974; Anderson & Reder, 1999). If two

concepts are associated, for instance, because they belong to the same semantic category,

they will excite each other, increasing decision criterion and thus the retrieval time and the

response latency.
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2.5. Architectural aspects of RACE ⁄ A

The previous sections illustrated the model’s behavior in various circumstances, focusing

on the short-term dynamics of RACE ⁄ A. We will now turn to the role of the cognitive archi-

tecture in RACE ⁄ A. Recall that in ACT-R the timing of all the subprocesses depends on the

(serial) execution of production rules and the (parallel) execution of module operations.

As a result, the particular specification of production rules determines when a particular
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Fig. 4. RACE ⁄ A dynamics for four typical retrieval processes with spreading activation between the chunks.

Left: activation of two chunks. Right: posterior probabilities for two chunks. The vertical dotted lines indicate

that a chunk has been retrieved. Note that the scales in this figure differ from Fig. 3. RACE ⁄ A, Retrieval by

Accumulating Evidence in an Architecture.
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subprocess commences. In RACE ⁄ A, this means that the production rules determine when

an accumulation process starts. The exact start time of an accumulator is important because

the accumulation process depends on the information that is present during the accumula-

tion, which may differ depending on the start time.

In addition, the timing of the accumulation process also has an impact on the starting

point value of accumulation. First, as indicated by Eq. 3, the accumulation of activation

of a chunk starts at the base-level activation of that chunk (expressed by Eq. 1). Decay

of base-level activation insures that as time progresses the base-level activation will be

lower. Therefore, if an accumulation process is started later in time, the starting point

of the accumulation process will be lower. Conversely, if by delaying the accumulation

process an additional encounter of a chunk has increased the base-level activation, the

starting point of accumulation for that chunk will be higher. It should be noted that

sequential sampling models could be devised to account for these parameter changes

(e.g., Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009 describe how stimu-

lus repetitions affect sequential sampling model parameters). However, RACE ⁄ A pro-

vides a theory-driven way of estimating these values, as computation of the base-level

activation values is firmly grounded in memory research (e.g., Anderson & Schooler,

1991).

A second way in which the starting point of accumulation can be altered is by assuming

multiple accumulation processes in sequence. If two processes are scheduled to occur in

close temporal proximity, and some (or all) of the chunks in the second process also accu-

mulated activation in the first process, then for those repeated chunks the starting point of

accumulation will be increased when the second process starts. This differs from the context

in which the base-level activation was increased due to an additional encounter, because the

repeated chunks are not necessarily retrieved in the first accumulation process. Because of

decay of the accumulated activation, the interval between the accumulation processes mat-

ters for the starting point estimate as well.
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RACE ⁄ A, Retrieval by Accumulating Evidence in an Architecture.

76 L. van Maanen, H. van Rijn, N. Taatgen ⁄ Cognitive Science 36 (2012)



The cognitive architectural aspects of RACE ⁄ A provide a theory on learning of declara-

tive facts (implemented with the base-level activation) and a theory of task control (imple-

mented with production rules). The interaction of these with a model of short-term

activation dynamics provided by the sequential sampling aspects of RACE ⁄ A will enable us

to explain complex behavior at a more detailed level. This will be tested in the following

sections. In Experiment 1 participants perform a complex task in which stimuli are repeated.

This is subsequently modeled using RACE ⁄ A. In particular, we make use of the short-term

activation dynamics inspired by the sequential sampling framework in combination with the

learning mechanisms inherited from ACT-R. To illustrate how the particular task setup

changes behavior, and how this can be modeled with RACE ⁄ A, we performed Experiment

2. Experiment 2 is equal to Experiment 1 except for the inclusion of an additional condition

that alters the behavior associated with the other conditions. The assumption underlying the

model of Experiment 2 is that participants deploy a slightly different task strategy than in

Experiment 1 that explains the different behavior in this task.

3. Experiment 1: Repetition priming in a dual task

In Experiment 1, participants are required to perform a PWI task in a PRP design. The

experiment is designed to illustrate two aspects of RACE ⁄ A. The first aspect is the interac-

tion between short-term memory processes and long-term memory processes. Following a

rational analysis of memory, RACE ⁄ A assumes that information that is encountered multi-

ple times will be increasingly likely to be needed in the future. This is reflected in an

adapted base-level activation value for those chunks (Eq. 1) representing an increased start-

ing point of the hypothesized accumulation processes underlying PWI (Van Maanen & Van

Rijn, 2007a, 2010; Van Maanen, Van Rijn, & Borst, 2009). In Experiment 1 pictures are

repeated multiple times. RACE ⁄ A predicts that the repetitions increase the base-level acti-

vation of the picture-related chunks, leading to increased starting points of the picture-

related chunks and thus to shorter accumulation processes.

The second aspect of RACE ⁄ A addressed by Experiment 1 relates to the interference

effects in a PRP task. In a PRP design, participants are asked to perform two tasks sequen-

tially. The first task is often relatively simple, whereas the second task is the task of interest.

The interval between the stimulus onsets of the two tasks is manipulated (stimulus onset

asynchrony [SOA]). A typical finding, known as the PRP effect (Telford, 1931), is a nega-

tive correlation between SOA and response latency on the second task. Responses to the first

task are typically unaffected by varying the SOA. The PRP effect has been explained by the

assumption that both tasks share a cognitive resource that can only be used by one task at a

time (e.g., McCann & Johnston, 1992; Pashler, 1994; Welford, 1967, 1980; but see Meyer

& Kieras, 1997a). Thus, the second task is delayed at short SOAs because the first task still

requires a critical resource, as illustrated in Fig. 6. As the interval between the tasks

increases, the delay becomes smaller, resulting in a faster response on the second task.

Accounting for complex multi-task designs is one of the strong points of many cognitive

architectures. For example, the EPIC architecture has been extensively applied to study PRP
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effects (e.g., Meyer & Kieras, 1997a, 1997b) and ACT-R has been applied to multi-task

interference as well (e.g., Altmann & Gray, 2008; Borst et al., 2010; Salvucci & Taatgen,

2008; Taatgen, Van Rijn, & Anderson, 2007). Therefore, in order to account for the PRP

aspects of Experiment 1, it makes sense to use a cognitive architecture approach.

Applying the PRP design to PWI (in which PWI is the second task) Dell’Acqua, Job,

Peressotti, and Pascali (2007) have shown that the effect size of PWI decreases with

decreasing SOA. In line with the typical PRP rationale, Dell’Acqua et al. argued that

these results indicate that the locus of interference in PWI is located before the singular

resource that both tasks share. The reasoning behind this is that an interval between the

presentation of the stimuli of the first and second task generates a delay in execution of

the second task (referred to as ‘‘cognitive slack time’’). This delay is caused because the

shared resource is not free for the second task when it is needed, and therefore task

execution is delayed (Fig. 6). Dell’Acqua et al. argue that because the effect locus of

PWI is before the shared resource, participants use the cognitive slack time to resolve the

interference. If the interval increases, the delay of the second task decreases. The interfer-

ence cannot be resolved in the slack time anymore and therefore becomes apparent in the

reaction times.

Thus, Experiment 1 includes aspects that are typically modeled within the sequential

sampling framework (interference) as well as aspects that are often modeled using cognitive

architectures (PRP). However, we contend that in order to provide a formal theory of the

combination of these aspects, a combination of modeling techniques is required.

3.1. Methods

3.1.1. Participants
Twenty-three students of the University of Groningen (mean age 22.7, 14 male, 9 female)

took part in this experiment for course credit. All were native speakers of Dutch and had

normal hearing and normal or corrected-to-normal vision.

Perceptual 
processing

S1 R1

S2 R2

Central cognitive 
resource

Response

Perceptual 
processing

Central cognitive 
resource

Response

Fig. 6. Gant diagram of the PRP effect. The top bar indicates processing in the first task. The bottom bar indi-

cates processing in the second task. S1, stimulus of task 1; S2, stimulus of task 2; R1, response on task 1; R2,

response on task 2. PRP, psychological refractory period.
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3.1.2. Stimuli
Forty-nine images were taken from an image set (PD ⁄ DPSS, Dell’Acqua, Lotto, & Job,

2000). The images that were selected for inclusion in this study had a naming agreement of

95%. Of each image, two PWI stimuli were created that consisted of the image, with a word

written in the center of the image. The words were selected as follows: For the related con-

dition, category members of the image descriptors were selected. The words for the unre-

lated condition were then selected from a lexical database (CELEX; Baayen, Piepenbrock,

& Van Rijn, 1993) and matched to the related distractors with respect to word length (plus

or minus 1 letter) and word frequency (± 10%).

The tones for the primary task consisted of a 300, 600, and 1,200 Hz tone, similar to the

experiment conducted by Dell’Acqua et al. (2007).

3.1.3. Design
For each participant, an experimental list was created in which each image was combined

with each relatedness condition (related and unrelated) and every SOA (100, 350, and

800 ms). This resulted in 294 trials per participant, in which each picture was repeated six

times. The lists were pseudo-randomized in such a way that (a) the same condition (related-

ness or SOA) did not occur more than twice in a row, and (b) the same tone did not occur

more than twice in a row.

3.1.4. Procedure
Each trial started with the presentation of a fixation cross for 1,500 ms followed by the

tone-classification tone for 150 ms. After the SOA, the PWI stimulus was presented. The

word and the picture that formed the PWI stimulus were presented simultaneously. The

participants were instructed to always respond to the tone first, and then to the PWI

stimulus. The tone had to be classified as low, medium, or high pitched by pressing the b, n,

or m keys, respectively, with the index, middle, and ring fingers of the right hand. For the

PWI task, the participants were instructed to name the picture. Responses were recorded

using a voice response box. If participants failed to answer in the correct sequence, a screen

reminding them of the correct procedure was presented.

The participants were tested individually. First, each participant practiced the tone-classi-

fication task in isolation (15 trials). Second, participants were familiarized with the PWI

procedure by responding to a set of non-experimental PWI stimuli in single-task setting.

Both PWI conditions were practiced for nine trials, for a total of 18 trials. Before each of

these practice blocks, the speed of responding was stressed as the important factor. Third,

the participant was presented with a practice block of the dual task (again nine trials per

condition). After this practice block, the actual experiment started. Two filler trials preceded

the experimental block and were excluded from analyses.

3.2. Results

One participant was excluded from the analyses because of an excessive error rate (52%

erroneous trials). Trials on which participants responded to the picture–word stimulus before
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responding to the tone were excluded from further analysis (2.4% of the trials). In addition,

trials in which the participant’s response on either the PWI stimulus or the tone was more

than three standard deviations from the participant’s mean per relatedness times SOA com-

bination were excluded (2.0% and 2.0%, respectively). Because these exclusion criteria

partly overlap, this resulted in exclusion of 5.2% of the trials. Following Dell’Acqua et al.

(2007), no other trials were excluded.

The overall pattern in the data is presented in Fig. 7A. A linear-mixed effects model (Bates,

2005) was fit to the data to find the relative contribution of the factors to the response latency in

the PWI task.3 Relatedness and SOA level, and the number of repetitions were included as fixed

effects, together with the interactions between these factors. Participant and Picture were

included as random effects, to account for intersubject and interitem variability. Markov-chain

Monte Carlo (MCMC) sampling of the mixed-effects model (10,000 simulations; Baayen,

Davidson, & Bates, 2008) showed that SOA, Repetition, and a two-way interaction between

SOA and Relatedness significantly contributed to the variance in the data (Table 1). Also, the

three-way interaction between SOA, Relatedness, and Repetition reached significance.

Further analysis of the effects per SOA level revealed that this three-way interaction is

caused by the decreasing interference over repetitions at a SOA of 800 ms. This interaction
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Fig. 7. Latency data (A) and model (B) from Experiment 1. Each panel represents the latency on each SOA

level for all repetitions of the picture. SOA, stimulus onset asynchrony.
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was not significant at other SOAs (Table 2). To summarize, this experiment replicates the

typical PRP effect, in which response latencies on the second task are negatively correlated

with SOA, the typical effect of interference when the distractor word is related but not iden-

tical to the to-be-named picture, and, additionally, a relatively straightforward effect of repe-

tition priming. The interaction indicates that at the 800 ms SOA, the repetition effect was

smaller for trials with related distractors as compared to the 100 ms SOA trials.

3.3. Discussion

The difference in the response time latencies reflects the difference between the related

and the unrelated condition: the interference effect. Since in the related condition picture

and word are semantically related (but not in the unrelated condition), the interference may

be an effect of competition between semantically related concepts. In both conditions, the

word and picture activate a conceptual representation, but in the related condition, it is

harder to decide on the correct conceptual representation of the picture (e.g., Glaser & Dün-

gelhoff, 1984; Van Maanen & Van Rijn, 2007a).

The size of the interference effect decreased with decreasing SOA. This observation sug-

gests that the competition between the word and the picture is resolved early in the mental

processing stream. If the interference effect under single-task conditions is located early in

the process (for instance, during the visual processing of the picture), then this effect will be

absorbed in the cognitive slack that is created by the PRP paradigm. Therefore, the presence

of cognitive slack decreases the overt interference effect (Dell’Acqua et al., 2007; Fig. 6).

On longer SOAs the slack time is decreased. Consequently, any additional processing that

might have been resolved in the slack time is now observable. Therefore, the PWI effect

reappears at longer SOAs. This effect replicates the findings of Dell’Acqua et al. (2007).

To study the details of the interactions between the effects identified earlier (repetition,

interference, PRP), a RACE ⁄ A model is required. All three panels of Fig. 7A show latency

Table 1

Mean coefficient estimates and confidence intervals for the linear-mixed effects model of Experiment 1

Factor Estimate 95% CI Lower 95% CI Upper p-Value

(Intercept) 1452.74 1366.45 1541.04 <.001*

Relatedness 38.93 )42.71 121.94 .36

SOA )0.41 )0.53 )0.29 <.001*

Repetition )46.89 )62.49 )30.99 <.001*

Relatedness · SOA )0.21 )0.38 )0.04 .014*

Relatedness · Repetition )14.35 )35.64 8.32 .20

SOA · Repetition )0.01 )0.04 0.02 .61

Relatedness · SOA · Repetition 0.04 0.00 0.09 .040*

Random effects

Picture 86.04 66.88 106.68

Participant 140.31 99.09 185.11

Notes. * ¼ p < 0.05

SOA, stimulus onset asynchrony.
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curves very similar to the power law of learning (Newell & Rosenbloom, 1981), indicating

that participants become faster with more repetitions. This is in line with the idea that at

each repetition, the conceptual representation of the picture is retrieved from memory,

strengthening its memory trace, and making it easier to retrieve the concept at the next pre-

sentation. The effect of repetition on interference can be modeled by incorporating the long-

term declarative memory mechanisms of RACE ⁄ A. In addition, the interference effects can

be modeled using the short-term activation dynamics in RACE ⁄ A. The PRP effect can be

accounted for by a particular specification of production rules.

3.4. Model of Experiment 1

The RACE ⁄ A model of Experiment 1 consists of two separate models: one model for the

PWI task and one model for the tone-classification task.4 The model of the tone-classification

task consists of two production rules: Rule 1 executes when a tone is detected and stores infor-

mation about the tone in the aural buffer (using the standard ACT-R theory on auditory pro-

cessing). Rule 2 maps the tone information onto a motor response and executes that response.

Table 2

Mean coefficient estimates and confidence intervals for the linear-mixed effects model of Experiment 1,

separated per SOA level

Factor Estimate 95% CI Lower 95% CI Upper p-Value

SOA = 100 ms

(Intercept) 1430.52 1326.77 1529.38 <.001*

Relatedness 24.11 )61.40 117.53 .59

Repetition )40.00 )57.92 )22.53 <.001*

Relatedness · Repetition )9.26 )33.38 14.97 .44

Random effects

Picture 92.79 64.85 122.79

Participant 175.22 125.50 233.94

SOA = 350 ms

(Intercept) 1257.57 1171.96 1342.83 <.001*

Relatedness )51.87 )134.64 30.50 .22

Repetition )55.98 )70.68 )41.54 <.001*

Relatedness · Repetition 2.83 )18.12 24.35 .79

Random effects

Picture 88.79 62.43 117.70

Participant 141.27 100.59 190.06

SOA = 800 ms

(Intercept) 1148.65 1070.51 1220.43 <.001*

Relatedness )132.09 )213.41 )57.91 .002*

Repetition )53.54 )66.68 )40.29 <.001*

Relatedness · Repetition 22.04 3.57 41.21 .02*

Random effects

Picture 93.15 68.96 118.49

Participant 110.90 74.96 149.36

Note. SOA, stimulus onset asynchrony.
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The model of the PWI task assumes that the task consists of three stages: a perceptual

stage, a decision stage, and a response stage (e.g., Dell’Acqua et al., 2007; Levelt, 1989;

Levelt, Roelofs, & Meyer, 1999; Van Maanen et al., 2009). When the PWI stimulus appears

on the screen, a production rule fires to retrieve conceptual information (referred to as a con-

cept chunk) related to the stimulus, and stores this in the visual buffer. This process is gov-

erned by the short-term dynamics of RACE ⁄ A. The concept chunks can be regarded as

representations of semantic properties of a certain concept. Even though this stage com-

prises more than pure perceptual processing, we will refer to this part of the task as the per-

ceptual stage. In the decision stage, the model tries to retrieve a lemma chunk that relates to

the concept chunk that was stored in the visual buffer. Lemma chunks can be regarded as

sets of orthographic and syntactic properties of a word. When an appropriate lemma chunk

has been retrieved, the model continues with the response stage, in which it first retrieves a

morphophonological chunk containing information on articulatory properties of the

response, and then initiates a motor program to execute a vocal response.

Two stimuli are presented simultaneously to the model, a picture and a word. When a

stimulus is presented, it spreads activation to related chunks in declarative memory (follow-

ing Eq. 4). To represent more prior practice with processing words than with processing

pictures (e.g., Cohen, Dunbar, & McClelland, 1990; MacLeod & Dunbar, 1988), spreading

activation from the word stimuli is higher than from pictures. This means that Eword in Eq. 4

is set at a higher value than Epicture (see Table 3 for the parameter values).

Text stimuli engages directly on the lemma chunks, while for pictures, conceptual infor-

mation needs to be retrieved before the lemma associated with an image can be retrieved.

This reflects the finding that words can be pronounced without a conceptual level (Glaser &

Glaser, 1989; La Heij, Happel, & Mulder, 1990). By contrast, activation of the depicted con-

cept is necessary for naming an image.

Because lemmas spread activation to the conceptual representations that relate to them

(Fig. 8), the presentation of a distractor word causes interference at the conceptual level,

Table 3

Model parameters. Parameters of Model 2 are only displayed when they differ from those in Model 1. Default

ACT-R parameters (other than those related to activation) are not included

Parameter Model 1 Model 2 Description

a 0.65 Short-term decay

b 0.7 Spreading activation scale

c 0.7 External activation scale

h 0.975 Decision criterion

d 0.5 Long-term decay

e 0.43 Moment-to-moment noise

Eword 1.375 3.5 External activation from words

Epicture 0.55 1.4 External activation from pictures

2500 ms Retrieval duration threshold mean

440 ms Retrieval duration threshold scale

45% Skip concept-lemma check
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decreasing the concept’s posterior probability. Likewise, spreading activation from the con-

cept chunks to the lemma chunks causes interference at the lemma level. This reflects the

principle in RACE ⁄ A that competition is not localized in a particular stage but may be dis-

tributed over all stages in which declarative memory is engaged. The competition in the

model is distributed over the different subsets of chunks, but in different magnitudes.

The different probabilities determine the latency difference between the related and unre-

lated PWI conditions. In the related condition, the concepts of the target and the distractor

spread activation to each other, decreasing the target’s probability. This mutual excitation is

not present in the unrelated condition, resulting in less competition, and thus a faster retrie-

val. These dynamics are also apparent from the simple simulations presented in Figs. 3a and

4a, which reflect the competition in the unrelated and related condition, respectively.

Once a concept has been retrieved, the model initiates a response. First it retrieves a

lemma representation that encodes the syntactic information associated with the desired

response; then, it retrieves a motor program to articulate the desired response. After retrieval

of the lemma, the model checks if the retrieved lemma matches the information from the

initial retrieval (i.e., the conceptual information). If not, the model retries to retrieve the cor-

rect lemma, excluding the just retrieved information from the retrieval set. However, this

concept-lemma check is not always performed as in more typical picture-naming behavior,

when no distractor is present; thus, it is highly unlikely that an incorrect lemma is retrieved.

In our model, we estimated that in 45% of all trials no concept-lemma check is performed.

Note that not performing a check does not always result in an incorrect trial, as the model

may have retrieved the intended information. Typically, errors due to omitting the concept-

lemma check are relatively fast. The second source of error reflects slow errors. If the dura-

tion of a memory retrieval crosses a certain threshold (the retrieval duration threshold), a

retrieval error is signaled, and the model reports an incorrect trial. This type of error may

reflect response time contaminants (Ratcliff & Tuerlinckx, 2002).

The retrieval duration threshold was sampled at each trial from a logistic distribution with

mean 2,500 ms and scale 440 ms. The retrieval error represents the second source of error

for the model.

GIRAFFE

giraffe
concept

"elephant"
lemma

elephant
concept

"giraffe" 
lemma

 elephant mp

giraffe mp

Fig. 8. Connections between different chunk types in the PWI model for an example stimulus. Note that in the

experiments the word and picture dimensions of the stimulus overlap. mp, morphophonological representation;

PWI, picture–word interference.
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Because of the task instruction to withhold the vocal PWI response until the tone classifi-

cation is made, the model includes a control state that insures that the retrieval of the

response lemma (as part of the PWI task) does not start until motor preparation for the but-

ton press (as part of the tone-classification task) has been initiated. As soon as the tone-

classification response has been initiated, the PWI mechanisms can access declarative

memory again, so the PWI task can continue before the actual button press is made.

Each time a chunk has been retrieved from memory, its base-level activation is updated

because it has gained an additional reference. This means that the starting point in the accumu-

lation process differs during the next retrieval for which that chunk is a competitor. Thus, at

each repetition of a picture, the starting point for the associated conceptual representation is

higher than on the previous repetition. A higher starting point results in a faster retrieval of the

relevant concept, and therefore a faster response. Moreover, a fast retrieval results in little

time for the other—distractor-related—chunks to accumulate activation, resulting in a smaller

interference effect. This accounts for the repetition priming effect observed in Experiment 1.

3.4.1. Model results and discussion
To fit the model to the data, we first created a model using the parameter values that are

considered the default in the ACT-R architecture. Next, we manually adjusted the additional

RACE ⁄ A parameters until we obtained a model fit that was close to the data.

Similar to the experiment, we excluded outliers that were more than three standard devia-

tions of the mean of each SOA-Relatedness combination. In the model, these outliers repre-

sent cases in which the model is unable to come to a decision due to multiple chunks

accumulating at the same rate. When the model reaches a deadline, the accumulation is halted

and the model retries to retrieve the desired chunk, resulting in prolonged-response latencies.

Fig. 7B shows that the model accounts for the repetition effect (RMSE = 56 ms). As the

number of repetitions increases, the responses become faster. In the model, strengthening

the memory trace of conceptual information as well as information at response levels causes

the repetition priming effect. Previous studies have provided evidence for the existence of this

dual process. For example, bilinguals show repetition priming for concepts that are presented

in one language on the first presentation and in another language on the next presentation

(e.g., Francis, Augustini, & Saenz, 2003; Francis & Sáenz, 2007). Thus, a repetition benefit

was present in the absence of a repetition of responses. This is evidence that conceptual infor-

mation is being reinforced on the first presentation, enabling a faster response on the second

presentation. On the other hand, certain lexical decision studies demonstrate that non-word

response latencies are also decreased by repetition, indicating that repetition priming also has

a speed-up effect if no conceptual representation is present, as is generally believed to be the

case for non-words in lexical decision experiments (e.g., Wagenmakers, Zeelenberg,

Steyvers, Shiffrin, & Raaijmakers, 2004; Zeelenberg, Wagenmakers, & Shiffrin, 2004).

In addition to a model fit for the correct trials, the model also provides error rates

(Fig. 9). The model assumes two sources of error to account for these responses. If the dura-

tion of a memory retrieval crosses a certain threshold, a retrieval error is signaled, and the

model reports an incorrect trial. We assume that these trials reflect response time contami-

nants (Ratcliff & Tuerlinckx, 2002) in which participants make a guess or generally resort
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to a different strategy. On average, this leads to a latency of 2,091 ms and is commited on

1.1% of the trials (Type I errors in Fig. 10). The second source of error is generally fast

(899 ms on average) and occurs on 4.8% of the trials, caused by an incorrect lemma retrie-

val in those trails in which no concept-lemma check is performed (Type II errors). The com-

bination of these two types of error predicts similar error rates and error latencies as

observed in the data (Figs. 7 and 8).

An important question in the context of this article is whether both the cognitive architec-

ture and the sequential sampling model are necessary to account for the data. The model of

this experiment strongly suggests that this question has to be answered affirmatively with
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Fig. 9. Accuracy data (A) and model (B) of Experiment 1, aggregated over stimulus repetitions. SOA, stimulus

onset asynchrony.
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respect to the cognitive architecture. Although the error pattern observed in Experiment 1

can be easily accounted for assuming a single process, it is necessary to schedule multiple

sequential sampling processes in a particular scheme to model the mean response time data.

This is because the start point of accumulation is determined by the interval between a previ-

ous sampling process and the onset of the current process. While admittedly such a schedul-

ing mechanism may be added to any sequential sampling theory, the theoretical implications

of chaining a series of accumulation processes would constitute a cognitive architecture in

its own right. Therefore, instead of coming up with new architectures, it is worthwhile to test

whether well-established cognitive architectures can perform this function.

In addition, the decrease of the interference effect observed in the data at the longest

SOA is accounted for by strengthening the activation of declarative chunks at each encoun-

ter. This leads to higher start points at successive retrieval processes, a decrease in retrieval

time, and less interference. The activation values are computed with the rational analysis of

memory incorporated by the ACT-R cognitive architecture. Again, similar mechanisms may

be added to sequential sampling theories if desired, but the current approach combines the

strengths of a long-standing tradition of a rational analysis of memory incorporated in a

cognitive architecture with precise sequential sampling models.

It is conceivable that a model can be developed that accounts for the data using a com-

pletely different explanation. For example, an architectural model of the Stroop task has

been proposed that hypothesizes that Stroop effects occur because of an unsuccessful retrie-

val of the color information and a subsequent retry (Altmann & Davidson, 2001). However,

by incorporating competitive mechanisms in our model we align with earlier research into

the nature of interference processes (e.g., Cohen et al., 1990; Roelofs, 1992).

Experiment 1 and Model 1 illustrate how RACE ⁄ A naturally interacts with an important

intrinsic property of the cognitive architecture ACT-R. The theory of long-term learning

and forgetting that was already present in the architecture was extended with a theory on

short-term dynamics of memory retrieval. This way, the interaction between (long-term)

repetition priming and (short-term) interference could be explained. Also, the model makes

use of the timing of the different subprocesses that are controlled by the production rule sys-

tem. Thus, the model makes use of the possibility to formulate a theory on task execution in

terms of the cognitive architecture.

However, one may be able to account for the same pattern in the data with a sequential

sampling model in which separate starting point parameters are estimated for each repeti-

tion. RACE ⁄ A, however, provides a principled estimate of the starting points, whereas a

pure sequential sampling model would leave them as free parameters.

4. Experiment 2: Cognitive control in a dual task

An important assumption in the model of Experiment 1 is that participants do not attend

the word while naming the picture. That is, although the word interferes with the retrieval of

the picture-related concepts and lemmas, the word is not fully processed. In the model this

is implemented by a task strategy that only attempts to retrieve the concept related to the
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picture (but at the same time, the word spreads activation to related chunks). The amount of

spreading activation from the word stimulus is controlled by a parameter Eword that deter-

mines the drift rate of the associated lemma (together with spreading activation from the

associated concept).

Experiment 2 was designed to influence the amount of attention that was given to the word.

This way, we manipulated the amount of spreading activation from the word stimulus. We

achieved this by adding an extra condition in which the word and the picture designate the

same conceptual information. This condition will be referred to as the congruent condition.

It has been hypothesized that including congruent trials in Stroop-like interference tasks

increases the latency difference between related- and unrelated-target distractor pairs due to a

decreased suppression of the automatic reading response (Logan & Zbrodoff, 1979). This

effect has been attributed to the amount of processing of the irrelevant stimulus dimension

(Botvinick, Braver, Barch, Carter, & Cohen, 2001; Van Maanen & Van Rijn, 2010). In terms

of the model, this would be reflected by a manipulation of the Eword parameter setting. Becau-

se—as in the model of Experiment 1—the model will have multiple dependent accumulating

processes, changing the spreading activation from the word not only influences the magnitude

of the interference but also the way the accumulating processes affect each other.

4.1. Methods

4.1.1. Participants
Twenty-two students of the University of Groningen (mean age 22.2, 14 male, 8 female)

took part in this experiment for course credit. All were native speakers of Dutch and had

normal hearing and normal or corrected-to-normal vision. The participants that took part in

Experiment 1 were excluded from participation in Experiment 2.

4.1.2. Stimuli
The stimuli were the same as in Experiment 1, except that for the congruent condition, a

third set of PWI stimuli was created. The distractor words for these stimuli were the Dutch

image descriptors.

4.1.3. Design
The design was the same as in Experiment 1.

4.1.4. Procedure
The procedure was the same as in Experiment 1. Due to the length of the experimental

block (441 trials and three filler trials), the participants were allowed three breaks, after

25%, 50%, and 75% of the trials.

4.2. Results

Again, we excluded trials according to the following criteria: Responses that were more

than three standard deviations from a participants’ mean were excluded (2.1% on the PWI
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stimulus, and 2.3% on the tone, respectively). Trials in which the responses were in the

incorrect order were also excluded (5.3%). Overall, 7.7% of the trials were excluded. The

data of Experiment 2 are presented in Fig. 11A. We fitted a linear-mixed effects model with

Relatedness, SOA, and Repetition as fixed effects and Participant and Picture as random

effects. MCMC simulations on the factors revealed that there were main effects of SOA

level, Relatedness, and Repetition (Table 4). In addition, all interactions were significant

except the SOA times Repetition interaction.

In contrast to Experiment 1, the interaction between SOA and Relatedness does not seem

to be due to the cognitive slack time induced by the PRP effect. Post hoc t tests show that

response times differ between Relatedness conditions on both the shortest and the longest

SOA (all p < .003). Only at the middle SOA of 350 ms we did not find a difference between
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Fig. 11. Data and models for Experiments 1 and 2. (A) Data of Experiment 1, collapsed over stimulus repeti-

tions for comparison. (B) Model of Experiment 1, collapsed over stimulus repetitions. (C) Data of Experiment 2.

(D) Model of Experiment 2. SOA, stimulus onset asynchrony.
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Relatedness conditions (the Related and Unrelated condition did not differ). This is in con-

trast with Experiment 1, in which the Related and Unrelated condition did not differ at the

shortest SOA (post hoc t test: p = .8) but did differ at the longest SOA (post hoc t test:

p = .003).

4.3. Discussion

The typical PRP speed-up is present in the data of Experiment 2, suggesting a correct

operationalization of the PRP design and indicating the presence of cognitive slack time.

Therefore, the observation that in the presence of congruent trials the mean response

latencies per relatedness condition differ at the shortest SOA (100 ms) suggests that

the interference between distractor word and picture was longer than could be absorbed in

the maximum cognitive slack time. This is different from the result of Experiment 1 in

which the interference could be absorbed in the cognitive slack time. In line with our opera-

tionalization of Experiment 2, we hypothesize that participants process the word more often

or to a higher level than in Experiment 1. As a result, the competition between conceptual

representations will be stronger and hence the interference of the related words will be

higher. However, it cannot simply be the case that the interference in the first stage of the

process becomes larger. That would mean that for the long SOA level of 800 ms, the inter-

ference effect would become even larger, because with an SOA of 800 ms there is no cogni-

tive slack time in which part of the interference can be resolved. Since the data show no

interaction between interference and SOA, this simplest explanation does not seem likely.

An explanation for this observation might be that the interference becomes more distributed

over different stages of the task. This means that the extended processing of the word does

Table 4

Mean coefficient estimates and confidence intervals for the linear-mixed effects model of Experiment 2

Factor Estimate 95% CI Lower 95% CI Upper p-Value

(Intercept) 1208.80 1112.61 1313.96 <.001*

Related 409.41 332.20 486.98 <.001*

Unrelated 237.53 157.96 317.23 <.001*

SOA )0.46 )0.56 )0.36 <.001*

Repetition )21.85 )33.81 )10.79 <.001*

Related · SOA )0.31 )0.47 )0.16 <.001*

Unrelated · SOA )0.17 )0.34 )0.02 .032*

Related · Repetition )43.84 )59.15 )27.89 <.001*

Unrelated · Repetition )16.64 )32.20 )1.32 .034*

SOA · Repetition )0.01 )0.03 0.02 .58

Related · SOA · Repetition 0.06 0.03 0.09 <.001*

Unrelated · SOA · Repetition 0.04 0.00 0.06 .022*

Random effects

Picture 64.31 48.34 78.85

Participant 195.28 147.24 247.42

Note. SOA, stimulus onset asynchrony.
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not only cause interference during the initial conceptual processing of the picture but also

during response stages. This explanation is in line with cascading models (Levelt et al.,

1999; McClelland, 1979) in which activation from different stages spreads to each other,

affecting processing later in the task.

In the current experiment, this explanation would mean that due to cascading activation

the interference is partly located at later (response) stages. Following the PRP logic, this part

of the interference effect would not be resolved in the cognitive slack time because it does

not commence until after the central resource (recall Fig. 6). RACE ⁄ A offers an implemen-

tation of this idea if we assume that the difference between Experiments 1 and 2 can be

expressed by the level of processing of the word. We hypothesize that the presence of con-

gruent trials in Experiment 2 leads to less suppression of the automatic reading response and

a higher level of processing of the word dimension of the stimulus.

4.4. Model of Experiment 2

As in Experiment 2, the focus of Model 2 is on the effect of presence or absence of con-

gruent trials. For this reason we now ignore the effects of repetition that were relevant in

Experiment 1 and Model 1. The model performs the same task as in Experiment 1, but we

assumed that participants in Experiment 2 process the word to a higher extent than in Exper-

iment 1. To account for this, we adapted the parameters that control spreading activation

from the stimuli (Table 3). All other parameters were kept constant.

If word and picture are congruent, the new values for spreading activation from the

stimulus mean that the activation of the lemma associated with the picture is high when

the model attempts a lemma retrieval. This retrieval will therefore be faster than in the

model of Experiment 1. The model can now directly continue with retrieving the chunks

that are required for response execution. This accounts for faster responses in the congru-

ent condition. However, if word and picture are not congruent (i.e., in the related or unre-

lated condition), the model initially retrieves the incorrect lemma. The reason for this is

that the incorrect lemma’s activation was increased by the presentation of the word, which

spreads more activation than the picture. Thus, the incorrect lemma is much more acti-

vated than the correct lemma, which represents the picture. The model will now check if

the retrieved lemma matches the information that initiated the retrieval. If not, the model

retries to retrieve the correct lemma, this time excluding the previously retrieved lemma

from the retrieval set. However, the incorrect lemma still spreads activation—mediated by

the concept chunks—to other lemmas, increasing the relative decision criterion. Therefore,

retrieval in the related condition is slower than in the unrelated condition. We hypothe-

sized that the presence of congruent trials in Experiment 2 decreased the suppression of

the automatic reading response relative to Experiment 1. In the model this was represented

by a higher value for the Eword parameter, reflecting more spreading activation from the

word. With this adjustment the model does not show an interaction between SOA and

Relatedness. Thus, extra processing of the word may cause more interference, which there-

fore may not be fully absorbed in the cognitive slack time, resulting in an overt latency

difference at short SOAs.
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4.4.1. Model results and discussion
Figs. 11–13 present the fit of the model to Experiment 2. Similar to the empirical data, the

model shows an increased interference effect at a SOA of 100 ms as compared to Experiment

1. Also, the model shows the standard PRP effect (Fig. 11, RMSE = 56 ms). The model fol-

lows the error rates in the data as well (Fig. 12), which do not depend on SOA. Similar to the

experimental data, the model shows a bimodal latency distribution of the incorrect trials

(Fig. 13). As for Experiment 1, the model error pattern consists of two types of errors. Fast

errors in this model are estimated to have a mean latency of 626 ms and are committed in

3.0% of the trials. The slow errors are committed in 1.8% of the trials and have an average

latency of 2,100 ms. The overall error rate in this model is slightly lower than the error rate in

the model of Experiment 1, which is caused by the underestimation of the errors in the

Congruent condition. The model does not make the fast Type II errors in the congruent

condition, because that would require the retrieval of a lemma chunk that is neither related to

the concept chunk, nor to the word dimension of the stimulus. The incorrect retrieval will then

be followed by a failure to check the correctness of the lemma. The likelihood of this combi-

nation is very low. In addition, the model also never reaches the deadline in the congruent

condition, because all evidence amasses to the same chunk, resulting in fast retrievals.

5. General discussion

In this article we have presented a modeling framework that combines insights from

sequential sampling models of reaction time with insights from cognitive architectures. We

have demonstrated with two experiments and two models how modeling the specific time

course of a task enables us to estimate the specific onsets and offsets of sequential sampling

processes.
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Experiment 1 and the RACE ⁄ A model of Experiment 1 showed how short-term dynamics

of activation can be combined with long-term activation dynamics to account for the inter-

action between interference and repetition priming in PWI. In addition, we showed how

these mechanisms can be embedded in a production rule system so as to account for PRP

effects. For long-term activation dynamics this approach is far from new, but the integration

of short-term activation dynamics and a cognitive architecture is novel.

Experiment 2 and the RACE ⁄ A model of Experiment 2 show that RACE ⁄ A may provide

an explanation for interference effects caused by cognitive control mechanisms thought to

act on the suppression of an irrelevant stimulus dimension. In addition, the RACE ⁄ A models

of Experiment 1 and Experiment 2 provide an explanation for the additive interference

effects observed in Experiment 2, which are not present in Experiment 1. Less suppression

of the word may lead to more interference that can no longer be absorbed in the cognitive

slack time.

5.1. Related work

Previous work that integrates sequential sampling models and high-level explanations of

cognitive behavior include Brown, Marley, Donkin, and Heathcote (2008), Kent and

Lamberts (2005), Lee and colleagues (Lee & Corlett, 2003; Lee & Cummins, 2004; Lee &

Dry, 2006), Nosofsky and Palmeri (1997), and Smith and Ratcliff (2009). These approaches

are characterized by a sampling model in which the drift rate is determined by psychological

concepts, rather than a free parameter as in the classifical sequential sampling models. For

example, the exemplar-based random walk model (EBRW; Nosofsky & Palmeri, 1997)

models classification as a random walk process. Here, the similarity between the target and

the exemplars of the category that are stored in memory determines how the model steps
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Fig. 13. Latency distribution for incorrect responses for Experiment 2 and the model. The gray lines indicate

the distributions of the two error types predicted by the model.
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toward the response options (the categories). In a similar vein, Lee and Corlett (2003) pro-

pose a sequential sampling model approach to classify sentences by topic. Here, the drift

depends on the log odds that a word in a sentence is exemplary of a particular topic and has

occurred in previous topical sentences before (cf. Anderson & Schooler, 1991). If the words

are highly exemplary for a topic, the drift is also high and the model decides quickly and

accurately. If the words are not topic exemplars, the model will reject that topic as the topic

of the current sentence. This approach is similar to RACE ⁄ A because it also considers how

often a particular item (or chunk, in RACE ⁄ A terminology) has been encountered.

RACE ⁄ A, however, also considers that more than one sequential sampling process may be

executed during task execution, and it provides a theory on the scheduling of these individ-

ual processes.

Another integrated approach is the SAMBA model for absolute identification (Brown

et al., 2008). Accumulation in SAMBA is driven by features of the stimulus. The magnitude

of the stimulus is compared to the magnitudes of the upper and lower boundaries of the

stimulus range, and the resulting relative value determines the drift rate. In addition to the

stimulus-dependent drift rate, SAMBA also includes decay of the accumulation after a

response, to account for sequential or between-trial effects. We take this idea one step

further by not only providing principled estimates for the starting point and drift rate param-

eters of the accumulation process but also integrating the accumulation process in a

full-fledged architecture of cognition. This way we can model interactions of multiple

memory retrievals, multiple learning mechanisms, and even multiple tasks.

5.2. Differences with ACT-R

RACE ⁄ A differs from default ACT-R in a number of ways. However, these adaptations

do not change the central assumptions (Cooper, 2007) that underlie ACT-R. The first obvi-

ous deviation from the default architecture is the inclusion of an accumulative process for

memory retrievals. This process replaces the, admittedly simpler, algebraic model. The new

model increases the explanatory power of the architecture. However, in the absence of com-

petition between chunks RACE ⁄ A makes the same predictions as ACT-R. This special case

is also addressed by Anderson (2007, appendix 3.1), who compares ACT-R’s latency pre-

dictions with a sequential sampling model (Ratcliff, Hasegawa, Hasegawa, Smith, &

Segraves, 2007) similar to RACE ⁄ A. Assuming no noise (and no competitors), the retrieval

time in RACE ⁄ A can be described as a ballistic model (cf. Brown & Heathcote, 2008), in

which the retrieval time is a function of the distance between the decision criterion and the

posterior probability for the chunk. Fig. 14 presents the predicted retrieval time for various

activation values. Especially for low activation values, RACE ⁄ A closely follows the ACT-R

predictions of retrieval times.

Another important difference is that RACE ⁄ A assumes that all chunks in declarative

memory spread activation. ACT-R has always implemented a more delimited account of

spreading activation in which only those chunks that are currently attended (i.e., chunks that

are in the buffers) spread activation. The justification for this change is two-fold. First,

experimental evidence from priming studies suggest that priming behaves as a full spreading
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activation mechanism. For example, it has been shown that priming effects persist if multi-

ple unrelated items are presented between prime and target, which is difficult to agree with

the ACT-R account (Becker, Moscovitch, Behrmann, & Joordens, 1997; Joordens & Besner,

1992). Second, by assuming a full spreading activation mechanism, we do not have to make

the assumption of a dedicated set of chunks that have a privileged status in that they spread

activation (and others do not). We feel that the increased emphasis on detailed computation

of activation in RACE ⁄ A calls for a more detailed account of spreading activation than in

default ACT-R.

A third difference between ACT-R and RACE ⁄ A is the way in which perceptual encod-

ing is treated. ACT-R traditionally models this by a fixed constant interval for perceptual

processes that are required to identify the perceived information (85 ms, Anderson, 2007).

RACE ⁄ A treats this as a special case of memory retrieval. We assume that features of the

stimulus become available during the first stages of perceptual encoding (cf. feature integra-

tion theory, Treisman & Gelade, 1980). These features are associated with declarative infor-

mation that consecutively competes for retrieval. The winning information is then stored in

the visual buffer (instead of the retrieval buffer). So, instead of a fixed duration of perceptual

encoding, we have implemented a variable encoding time based on features of the stimulus

and a selection process.

5.3. Future research

In this article we discussed two settings in which the need for a combined approach such

as RACE ⁄ A is eminent. However, we did not applied RACE ⁄ A to its full potential. One of

the successes of the sequential sampling framework is the ability to account for response

time distributions (for both correct responses and error responses), instead of only means.

For example, the drift rate and the decision criterion of a sequential sampling model have
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different effects on the shape of response time distributions. The exact effects of these

parameters have been an active research topic in the sequential sampling community (e.g.,

Dutilh et al., 2009; Ratcliff & Tuerlinckx, 2002). The current work opens up the possibility

to study particular response time distributions in complex tasks. One important aspect that

will arise during this research is how sequences of accumulator models combine into one

distribution, and how that distribution will change if characteristics of the task change. For

example, RACE ⁄ A makes it possible to study how and why the RT distribution of Experi-

ment 1 in this article changes as the SOA between the tasks increases.

5.4. Conclusion

Although we implemented RACE ⁄ A as an extension to ACT-R (which can be down-

loaded from http://www.ai.rug.nl/~leendert/race-a), it should be stressed that the main points

of this article apply to other architectures as well. For example, the cognitive architecture

Soar may be extended in a similar way. Soar is a cognitive architecture that also utilizes pro-

duction rules for task control (Newell, 1990). In addition, Soar also contains a memory sys-

tem for storing and retrieving facts (Laird, 2008).

We concede that many aspects of embedding accumulator models as we proposed remain

to be studied. At the same time, we see great value in the current approach, as it has the

potential to increase the power of models of decision making as well as the power of cogni-

tive architectures.

Notes

1. In the simulations reported throughout this article, we used the discrete version of Eq. 4:

Ciðtþ DtÞ ¼ ð1� aÞCiðtÞ þ b
X
j

SjiAjðtÞ þ c
X
k

SkiEkðtÞ þ eiðtÞ:

2. The method described by Dragalin et al. (1999) is in fact asymptotically optimal. The

method is a generalization of the optimal solution that exists for decisions between

two choices, and it approaches optimality for decreasing error rates. For two-alterna-

tive choices, RACE ⁄ A also simplifies to the optimal model.

3. R code for this linear-mixed effects model as well as the data can be downloaded from

http://csjarchive.cogsci.rpi.edu/Supplemental/.

4. This model and subsequent models discussed in this article can be downloaded from

http://csjarchive.cogsci.rpi.edu/Supplemental/.
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