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Abstract 
This paper discusses a method of modeling individual 
differences in cognitive control by developing models that 
differ in control structure.  Such a strategy for modeling 
behavior is necessitated when tasks are complex and 
individual differences in performance vary on many measures 
of performance.  For these tasks, merely adjusting a parameter 
to fit various groups of subjects may be impractical or 
impossible.  Two such models for the Abstract Decision 
Making task are implemented in ACT-R to fit the 
performance of high and low-control subjects in the first 
experiment.  These models are then used to accurately predict 
performance on a second experiment that involves novel 
“games” unrepresented in the prior experiment. 
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Introduction 
Computational models of cognition are often developed to 
fit the average performance on a task by a population.  
While this method suffices when describing phenomena that 
are observed widely, it purposefully ignores individual 
differences.  One way to model individual differences is to 
propose some parameter – such as working memory 
capacity – that varies among individuals and observe how 
changes in that parameter affect the model’s performance 
(Daily, Lovett & Reder, 2001; Taatgen, 2002; Rehling, 
Demiral, Lebiere, Lovett, & Reder, 2003; Chuderski, 
Stettner & Orzechowski, 2006). 

However, when tasks are more complex, manipulating 
isolated parameters to fit individual differences becomes 
more challenging.  For these types of tasks, it is possible to 
assume that individuals adopt different control structures 
that manifest themselves as different problem solving 
strategies.  The different degrees of cognitive control can be 
characterized as the amount of top-down control that an 
individual exerts when completing a task, as opposed to 
behavior being primarily driven by bottom-up processes 
(Taatgen, 2007).  This paper explores the development of 
distinct models using the ACT-R architecture (Anderson, 
2007) that differ in control structure to describe individual 
performance on the Abstract Decision Making (ADM) task 
(Joslyn & Hunt, 1998). 

Abstract Decision Making Task 
ADM is a task developed by Joslyn and Hunt (1998) 
designed to predict individuals’ performance on various 
real-world tasks that require decision making under time 
pressure.  The task was used in a battery of tests designed to 
show individual differences in cognitive control. 

ADM involves 5-minute long “games” that require 
subjects to classify objects into 1 of 4 bins according to their 
attributes.  Both objects and bins have 3 attributes: size, 
color and shape.  Only objects that match a particular bin’s 
attributes are allowed in the bin.  While objects always have 
3 concrete attributes (e.g. small, red, circle), bins may 
specify any subset of the attributes (e.g. all circles).  The 
number of attributes that a bin omits (i.e. the number of 
those that are wildcards) will be referred to as its generality.  
Thus, an “all circles” bin has a generality of 2 because it 
does not specify size or color.  The generality of a game is 
defined as the greatest generality of its 4 bins. 

Each game consists of 4 different bins that subjects study 
for as long as they want prior to starting the game.  Because 
reviewing bins during the game is a slow and hence costly 
action, it is in the subject’s interest to memorize the 
attributes of the bins.  During the game, an object becomes 
available every 15 seconds with a pop-up notification that 
the subject must dismiss before continuing.  None of the 
attributes of objects are immediately visible even when they 
become available.  To reveal one attribute of an available 
object, the subject must query it by typing in the appropriate 
commands.  To assign an object to a bin, the subject must 
type in a different set of commands. The subject receives 
points if an assignment is correct and loses points if it is 
incorrect.  The magnitude of reward or penalty is inversely 
proportional to the generality of the bin – that is, more 
specific bins award more points. 

Because there is a time limit and objects are presented 
quicker than most subjects can classify them, there is a time 
pressure urging subjects to act as quickly as possible.  To 
analyze performance on the ADM task, we specified several 
measures that could be computed per subject for each game.  
The most obvious is the score measure, which is identical to 
the cumulative points that the subject earns for assigning 
objects to bins.  For analysis, we normalized scores to a 
proportion of total possible points in a given game.  Because 
penalties are assessed for incorrect assignments, negative 
scores are possible. A major problem with the score 
measure is that various factors play into determining the 
final score – including accuracy, speed, and whether 
subjects assigned objects to the more lucrative specific bins.  
To help tease those factors apart, idealness was defined as 
the proportion of correct assignments that were ideal.  For 
any given object, there can be more than 1 bin to which it 
can be assigned, with 1 bin being the most specific and 
lucrative.  Idealness is the proportion of correct assignments 
where the subject chose the best bin.  Finally, queries was 



defined as the average number of attribute queries a subject 
made of an object before attempting to assign it for the first 
time.  This can range from 0 meaning the subject never 
queried any attributes – quite a suboptimal strategy – to 3 
meaning the subject always queried every attribute.  Values 
greater than 3 are also possible if the subject queried an 
attribute more than once.  

Experiments 
Two experiments were conducted.  The first allowed the 
generation of models.  The same models were used to 
predict subject performance in the second experiment, the 
results of which were used to validate the models. 

Experiment 1 
The task consisted of 2 practice games and 4 real games.  
Practice games used just 3 bins and had 20 seconds between 
object presentations.  The 4 real games consisted of 2 games 
each of generality 0 and generality 1.  Forty-one people 
from the Carnegie Mellon University community 
participated as part of a larger experiment studying 
individual differences. Models were developed to fit the 
pattern of data observed in experiment 1. 

Experiment 2 
The task consisted of just 1 practice game followed by 4 real 
games.  The real games increased in generality from 0 in 
game 2 to 3 in game 5.  Fifty-three subjects participated in 
experiment 2. 

Models 
Two ACT-R models were developed to describe subject 
performance in the ADM task – one for a high-control 
strategy and one for a low-control strategy.  Because it is 
unclear which aspects of the task give rise to particular 
subject performances, an attempt was made to model the 
task as closely as possible to the actual experiment.  The 
model, like subjects, must type in certain commands in 
response to text prompts to query and assign objects.  This 
is accomplished via ACT-R’s perceptual and motor 
modules, which simulate the amount of time required to 
process visual stimuli and perform key presses.  The amount 
of time required for the models to process textual prompts 
was adjusted so that the models classified roughly the same 
number of objects per game as did subjects.  This was a 
simplification to reflect the amount of time people need to 
parse a prompt, because the models were able to deduce the 
current state of the textual interface as soon as the visual 
stimuli was encoded.  One further simplification made in 
modeling the task was that the new object pop-up 
notifications were omitted for the model runs. 

In both models, the objects are processed in order as they 
become available.  Neither model moves on to a subsequent 
object until the current object has been successfully 
assigned to a bin.  Each bin is stored in declarative memory.  
A representation of the current object is kept in the imaginal 

buffer, which is ACT-R’s mechanism for temporarily 
storing the current problem state.  The imaginal buffer 
representation includes slots for the object attributes that get 
filled in as they are queried.  The imaginal buffer was 
configured to spread activation to items in declarative 
memory, so that when deciding which bin to assign an 
object to, bins that had matching attributes to those of the 
imaginal buffer representation were more likely to be 
retrieved than other bins. 

The differences between the low-control and high-control 
models are outlined below.  

Low Control Model 
This model (Figure 1) makes use of the bottom-up process 
of expected utility available as a module in ACT-R 
(Anderson, 2007) to decide at each step whether to query 
more object attributes or to attempt an assignment.  Two 
exceptions are when no attributes of an object are known, 
then it will always query, and, conversely, when all 
attributes are known, it will not query any more. The 
“query” production rule’s utility is held constant while the 
“retrieve bin” production rule will gain or lose utility based 
on past successes and failures.  When an assignment is 
correct, a positive reward is propagated backwards through 
the production rules that had fired leading up to the 
assignment.  As a result, the “retrieve bin” production rule 
gains utility relative to the “query” rule, thus, in the future 
the model is more likely to ask fewer questions before 
assigning.  On the other hand, when an incorrect assignment 
is made, a negative reward (i.e. a penalty) is propagated to 
the “retrieve bin” rule, leading to more queries before 
assignment. 

When a bin is retrieved, it is checked against the currently 
known attributes of the object in question.  If there is a 
mismatch, the model reverts to the state where it may 
attempt another retrieval or query for another attribute.  
Otherwise, if it is a match or if it might be a match, it will 
attempt to assign. 

This model makes incorrect assignments when the 
retrieved bin specifies attributes that have not yet been 
revealed from the object. For example, after only having 
determined that a given object is red, the model may retrieve 
a bin that will take red circles.  Even though the red object 
may not be a circle, the low control model will still try to 
assign the object to this bin, possibly resulting in an error.  
This leads to a corresponding negative reward, thus slightly 
biasing the model towards querying more in the future.  

 



 
 

Figure 1: Low control model flow diagram. 
 

 
 

Figure 2: High control model flow diagram. 
 

High Control Model 
The high control model (Figure 2) follows a more 
disciplined strategy by exerting additional top-down control.  
Instead of relying on the expected utility of querying versus 
assigning, the model attempts to maximize correctness and 
points gained by evaluating one bin at a time to see if it will 
take a given object.  It also tries to minimize queries by 
assigning to a potentially matching bin if no other 
candidates can be retrieved.  Specifically, it will always 
query first, then, after each query, it will attempt to retrieve 
a matching bin.  If a matching bin is found, it tries to 
retrieve a better match – if one is found, it assigns the object 
to the better bin, and if one is not found, it assigns to the 
original match it had found earlier.  If, after the original 

retrieval, a maybe matching bin is retrieved, it attempts to 
retrieve other bins.  If no other matches are found, then it 
will assign to the first “maybe” bin it had retrieved, on the 
assumption that the object must fit the only possible bin. 

An example will help illustrate the model’s logic and how 
it minimizes the number of queries while maintaining 
accuracy.  Suppose there are just 2 bins, one for small red 
circles (called A) and another for any small red shape 
(called B).  When the model starts processing an object, it 
may query the object’s shape.  Suppose this object is a 
triangle.  The model now tries to retrieve a bin, and retrieves 
the bin B.  The model recognizes that the triangle may fit in 
this bin, but the color and size could possibly mismatch.  
The model now moves to the “retrieve others” state and 
attempts to retrieve other bins.  It retrieves bin A, and sees 
that the triangle is a mismatch for this circles-only bin and 
discards it.  It then fails to retrieve any other bins because 
there are no other bins for this game.  It then concludes that 
the first bin – bin B – must be the correct bin, and assigns 
the triangle to the small red shapes bin.  Thus, after just 1 
query the model was able to correctly classify the object. 

This model only makes errors when it fails to retrieve 
matching bins after first having found a possible candidate.  
This is, during the “retrieve others” state, it fails to retrieve a 
“maybe” bin even when one exists in its declarative 
memory.  This outcome results from the fact that bin 
retrievals are subject to activation decay and noise. 

Results and Model Fits 
In order to fit the models to subjects, subjects were divided 
into a high-control group and a low-control group based on 
certain idealness and queries criteria.  Each model was then 
developed to fit a group of subjects in experiment 1.  Apart 
from the control structures of the models, their speed of 
processing textual prompts was adjusted so that they 
classified roughly the same number of objects that subjects 
classified during each game. Finally, predictions were made 
for experiment 2 using the exact same models, and their 
outputs were compared to data observed in experiment 2. 

Control Grouping 
The criteria for splitting subjects into groups was based on 
the idealness and queries measures for the games which had 
generalities of 0 and 1 – that is, games involving no 
wildcards in bin attributes, and games additionally involving 
bins with 1 wildcard, respectively.  Because in games with 
generality 0 each object can only be assigned to 1 bin, the 
idealness measure is necessarily 1.0 for all subjects.  With 
the addition of generality 1 bins, each object can be assigned 
to either 1 bin (the most specific bin), or to 2 bins.  If a 
subject always assigns to the best bin, idealness will still be 
1.0.  If, on the other hand, the subject assigns to the more 
general, less lucrative bin(s), idealness will decrease.  Figure 
3, shows the distribution of subjects’ idealness measures for 
experiment 1, generality 1, while Figure 4 shows the same 
measure for the varying game generalities.  A somewhat 
bimodal distribution is evident at generality 1, with many 



subjects getting a perfect 1.0 and a cluster of subjects 
getting a lower value around 0.7 through 0.9.  The 
bimodality is further exemplified in games of increasing 
generality.  These distributions suggest that two distinct 
strategies were used by subjects, rather than subjects 
varying on one continuous dimension.  We deemed subjects 
who had idealness greater than 0.9 in the generality 1 games 
to be potentially high-control, and others as low-control. 

 
 

Figure 3: Distribution of experiment 1 subjects’ idealness 
measure for games of generality 1 as a density plot.  The 

dashed line shows the cutoff for high-control classification 
on the idealness measure. 

 
In addition to the idealness criterion, a criterion based on 

the number of queries was used for control group 
classification.  The motivation for adding another criterion 
is that using the idealness criterion alone, subjects would be 
classified as high-control if they simply attempted to assign 
objects to the most lucrative bins first, and, failing that, try 
the more general bins.  This strategy maximizes idealness 
while minimizing the number of queries to the detriment of 
overall score.  In order to filter out such strategy takers from 
high control classification, we required subjects to show an 
increase in queries when playing generality 1 games as 

compared to when playing generality 0 games.  Because of 
the configuration of bins, more queries are required to find 
the ideal bin when there are wildcards involved. 

In experiment 1, 27 subjects out of 41 were classified as 
high control on the idealness criterion, with 25 of those also 
matching the queries criterion for high control.  For 
experiment 2, these numbers were 24 out of 53 for the 
idealness criterion and 18 of those matching the queries 
criterion also. 

Model Comparison 
Having grouped subjects thus, the outputs produced by 

the models were compared to the observed data.  Figure 5 
shows the overall score, number of queries, and proportion 
ideal for each game generality in experiment 1.  The two 
practice games are excluded from analysis, and the 2 games 
of each generality are collapsed. 

Of note is that, regarding idealness, the low control model 
reflects the degree to which subjects decrease idealness in 
generality 1 games, while the high control model maintains 
a near-perfect mark.  Furthermore, the high control model 
increases the number of queries as it moves to the more 
general games as do subjects.  This is noteworthy because 
the high control model is designed to minimize the number 
of queries, but it is sensitive to the fact that more queries are 
necessary for high performance, a feat made possible by its 
complex control structure. 

The group classifications are good predictors of overall 
score in experiment 1, producing a main effect of group on 
score, F(1, 160) = 52.6, p < 0.01, in addition to a main 
effect of game generality on score, F(1, 160) = 20.4, p < 
0.01. 

Figure 6 shows the same measures plotted for experiment 
2.  Note that in this experiment, there was 1 game each of 
the 4 levels of generality, and there was only 1 practice 
game as opposed to 2.  That may explain the lower overall 
performance of subjects in this experiment compared to 
experiment 1. 

Figure 4: Distributions of experiment 2 subjects’ idealness measure for games of varying generality. 



 

 

 
 

Figure 5: Experiment 1 data (solid lines) and model fits 
(dashed lines) for high control (open shapes) and low 

control (crosses).  Error bars, shown only for subject data, 
represent standard error. 

 

 

 
 

Figure 6: Experiment 2 data and model fits. 
 
 

For these data, models were not explicitly designed to fit the 
data but instead were extrapolated from those designed for 
experiment 1.  The fits for game generality 2 and 3, which 
were nonexistent in experiment 1, show that the models 
predict subject behavior in the right directions.  The most 
notable deviation is the exaggeration of differences in the 
number of queries between the high and low control models.  
The high control subjects maintain the number of queries at 



around 2.0, while the model maintains it slightly higher.  On 
the other hand, low control subjects show a gradual decline 
in the number of queries.  The interaction of subject group 
and game generality on the number of queries was 
significant, F(1, 203) = 4.27, p < 0.05. The models also 
successfully predict the differences in the proportion of 
assignments that are ideal in the more general games, with 
the low control subjects and model showing a significant 
drop while the high control subjects and model show a 
much smaller drop.  Again, the interaction of group and 
game generality on idealness was significant, F(1, 202) = 
6.21, p < 0.05. 

Discussion 
This paper explored a method of analyzing individual 
differences in cognitive control by developing models that 
differ in control structure.  When tasks are more complex, 
simple parameter fitting may become impossible or 
impractical to explain the myriad differences in behavior 
that individuals show.  For such tasks, it can be useful to 
assume that different people employ different control 
strategies and develop separate models to represent those 
control structures.  A high control strategy means that it is 
less influenced by the environment and exerts more top-
down cognitive control.  In the ADM models, the low 
control model behaved according to past outcomes of 
various actions, while the high control model followed a 
strategic course of action to maximize performance.  That is 
not to say, however, that individuals do not also vary 
according to parameters like working memory.  In fact, 
fitting the working memory parameter to individual subjects 
in addition to selecting different control structures would 
probably have resulted in more accurate fits.  

The possibility remains that a single model could account 
for the data by varying a parameter, such as a model of 
speed-accuracy tradeoff varying on retrieval latency.  
However, the fact that the data show bimodal distributions 
of an outcome variable suggests discreet strategic 
differences between subjects.  It may be the case that 
something akin to a speed-accuracy tradeoff leads subjects 
to adopt different control strategies. 

It is also noteworthy that the model predictions presented 
here for experiment 2 were indeed predictions; that is, no 
parameters were adjusted nor any other modifications made 

to generate output for experiment 2.  This is an important 
aspect of modeling to ensure that models are not overly 
specific to a given experimental situation.  In other words, 
validating model outputs on novel experimental conditions 
helps avoid overfitting of data.  Such validation supports the 
view that certain aspects of a model are applicable beyond 
the specifics of the experiment. 
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