
ACTRANSFER TUTORIAL !

� "

Niels Taatgen!
July 2012 (Updated January 2014) 

INSTR13

V3=V2

INSTR12

V3<>V2

INSTR11

ADD−FINGERS

INSTR10

RT3−>PS2

PS2−>AC2

PS2=RT2

PS1=V2

INSTR9

RT3−>PS2

PS2−>AC2

PS2=RT2

PS1<>V2

INSTR8

RT3−>PS1

PS1−>AC2

CONST5−>AC1

PS2−>RT2

INSTR7

CONST4−>PS1

V1−>PS2

ADD

INSTR6

RT1=CONST1

INSTR5

CONST4−>AC2

INSTR4

INSTR3

SEMANTIC

INSTR2

RT3−>AC2

CONST5−>AC1

CONST6−>TASK0

V2=RT3

INSTR1

RT3−>PS1

V2<>RT3

PS1=RT2

INSTR0

V1−>PS1

PS1−>AC2

CONST5−>AC1

PS1−>RT2

CONST6−>RT1

V1<>NIL

PS1=NIL

COUNT

CONDITION
ACTION
ADD−FINGERS
ADD
SEMANTIC
COUNT

Actransfer Tutorial" � 1

Funded by ERC StG
283597 MULTITASK

Introduction!
This document is a tutorial to get started with Actransfer, an extension to ACT-R to model
transfer phenomena. An example using addition and semantic reasoning will be discussed,
followed by an exercise in which you have to add a model that does addition. !

If this document is not already part of the tutorial package, retrieve a copy of actransfer and
the tutorial files from the following webpage:!

http://www.ai.rug.nl/~niels/actransfer/tutorial.html !

In addition to the files specific to Actransfer, there is a version of ACT-R with which the
system is guaranteed to work (currently July 2012). !

To start using Actransfer, simply compile and load the file after loading ACT-R itself. You
can then load an Actransfer model, just as you would load a regular ACT-R model.!

Actransfer has been tested on Lispworks and Clozure CL, and has been reported to work
with Allegro CL.!

The structure of an Actransfer model!
Basically the only thing an Actransfer model provides is a specification of task instructions
or operators in ACT-R’s declarative memory. Given that these operators are hard to
interpret in the regular ACT-R syntax, a small specification language is provided that makes
things more readable. In addition to the model code itself, a model file typically contains, as
is common in all ACT-R models, Lisp code to simulate the experiment and to collect data.!

The example we will use consists of two models from the standard unit 1 of the ACT-R
tutorial, count and semantic, but now translated into Actransfer. The operators in Actransfer
correspond one-on-one with productions in the unit 1 models.!

Let us look at the file CountSemantic.lisp. After a number of Lisp functions, the model
starts with:!

(define-model-transfer!

(add-dm!

;;; count-facts!

 (count0 isa fact slot1 count-fact slot2 zero slot3 one)!

 ...!

 (count5 isa fact slot1 count-fact slot2 five slot3 six))!

Actransfer Tutorial" � 2

This is just like in a regular ACT-R model: we start the model definition with some
declarative facts. Note though that all facts are of type “fact”, and use slot names slot1..slotn
(n<5, presently). After DM declarations, the “real” model starts:!

(add-task count :input (Vstart Vend) :working-memory (WMcount) :declarative ((RTcount-
fact RTfirst RTsecond))!

:pm-function do-action!

:init init-count!

:reward 10.0!

:parameters ((sgp :lf 0.15 :egs 0.2 :ans 0.1 :rt -0.5 :alpha 0.2)) !

 (operator :condition (Vstart<>nil WMcount=nil) :action (Vstart->WMcount  
(say WMcount)->AC (count-fact WMcount)->RT) :description "Initialize Count")!

 (operator :condition (Vend<>RTsecond WMcount=RTfirst) :action (RTsecond->WMcount  
(say WMcount)->AC (count-fact WMcount)->RT) :description "Counting Step")!

 (operator :condition (Vend=RTsecond) :action ((answer RTsecond)->AC  
finish->Gtask) :description "Finalize count"))!

The function “add-task” starts the declaration of a model for a new task, in this case
“count”. After giving the task a name, it is followed by a number of declarations that each
start with a colon (:). !

The first three of these declarations give names to the slots in the buffers. These
declarations are comparable to chunk-types, except that they don’t actually end up in the
declarative memory representations themselves, but are replaced by generic slots
slot1..slotn. The input buffer (which is used for all perceptual input) has two slots: Vstart and
Vend. We will use these to set the start and end numbers for counting. In the counting task,
the input is just set to particular numbers, but in a more complex model these values can
change depending on the model’s actions (or because things just happen in the world). Even
though you can use any identifier that you like to refer to the slots, we will use the
convention of starting with uppercase letter(s) that indicates the buffer.!

Working memory refers to the problem-state or imaginal buffer :working-memory
(WMcount) names a slot in the problem-state buffer. There can be up to four slots in the
problem-state buffer. “Declarative” refers to facts retrieved from memory. It is a list, because
there can be multiple different types. Again, types are only for our convenience, because
they are translated to generic slot names in the actual model. In the count example, there
are only count-facts. !

The next two declarations, :pm-function and :init, specify which Lisp functions interface
with the experimental code. I will explain those later.!

Actransfer Tutorial" � 3

The reward parameter (:reward) specifies the reward the model gets when successful. Finally,
the :parameters declarations allows you to set any ACT-R parameters, or execute any other
Lisp code during the loading of the model (whatever is in parentheses is just evaluated).!

The essence of the model, though, is in the operators. They all start with “(operator”, and
are followed by a list of conditions and a list of actions. Optionally you can add a description
that will be printed in the trace (strongly recommended!). On the condition side, there are
four types of comparisons that can be made: BufferSlot1=BufferSlot2,
BufferSlot1<>BufferSlot2, BufferSlot1=nil, or BufferSlot1<>nil. You can
use any of the slot names you have defined in these tests, and, in addition, four predefined
slots: Gtask, Gcontrol, Gparent and GWM. Gtask refers to a slot in the goal that
represents the current task (count in the example). If you change that slot, you’ll change the
task you are doing. Gcontrol is also a slot in the goal that can be used to represent a control
state. We will not discuss Gparent and GWM here, because they are used for working
memory control, which we will not touch upon in this tutorial. !

Instead of a BufferSlot you can also put a constant value in a comparison, which will be in
lowercase by convention. For example, we can check whether the count in working memory
is zero by checking WMcount=zero. In the model, constants will be put in one of the
buffers, so WMcount=zero will be translated to a comparison between an imaginal buffer
slot and a slot in the goal that holds the constant zero. A condition involving any BufferSlot
will only be satisfied if the value of that Slot is non-nil, with the exception of
Bufferslot1=nil, of course. So WMcount<>Vend will not match if WMcount is still nil.!

There is only one type of action, and that is one in which you copy the contents of one slot
to another. The format for this is BufferSlot1->Bufferslot2. For some buffers it is
convenient to specify multiple steps at the same time. For example, instead of  
count-fact->RTcount-fact WMcount->RTfirst, you can specify  
(count-fact WMcount)->RT. Again, this is just syntax and will lead to the same
declarative representation. On the action side there is an addition buffer “AC”, which is used
to represent external actions (manual, vocal, etc). You will typically copy all values to the AC
in one step (like with RT), so the individual slots have no specific names. !

To got a sense of how an operator specification translates into declarative memory let us
look at an example: the first operator in the counting model.!

(operator :condition (Vstart<>nil WMcount=nil) :action (Vstart->WMcount  
(say WMcount)->AC (count-fact WMcount)->RT) :description "Initialize Count")!

This operator translates into declarative chunks in the table below (note that you don’t need
to understand this translation for the tutorial). What you can see is that all the slotnames

Actransfer Tutorial" � 4

have been replace by generic names (e.g., V1 instead of Vstart), and that all constants have
been put in INSTR0 (i.e., SAY and COUNT-FACT). These are referred to with CONST5
and CONST6, respectively. The table also already shows one chunk (INSTR3) of the
semantic task that we will discuss later.!

The example operator in the table initializes the count, and is applicable when the counter
in working memory has not been set yet, but when there is a perceptual input the specifies
the starting number. Therefore the conditions are Vstart<>nil: there is something in the
input, and WMcount=nil: the counter is still nil. If both conditions apply, there are three
actions (or actually five, because the last two consists of two actions): Vstart->WMcount,
move the perceptual input into the counter in working memory, (say WMcount)->AC,
move the constant “say” and contents of the counter to the Action buffer (so these are
actually two actions: copying “say” and copying the counter). The action buffer forwards
whatever you put into it to your self-defined pm-function, which than is assumed to carry

(operator :condition (Vstart<>nil WMcount=nil)  
:action (Vstart->WMcount (say WMcount)->AC (count-fact WMcount)->RT)  
:description "Initialize Count")

(INSTR0  
ISA INSTR  
TASK COUNT  
CONDITION CD1  
ACTION AC4  
SLOT1 NULL  
SLOT2 NULL  
SLOT3 NULL  
SLOT4 NULL  
SLOT5 SAY  
SLOT6 COUNT-FACT)

CD1!
 ISA CONDITION!
 NAME CD1!
 C V1<>NIL!
 CNEXT CD0!
 SLOT1 NIL

AC4!
 ISA ACTION!
 NAME AC4!
 A V1->PS1!
 ANEXT AC3!
 SLOT1 NIL

CD0!
 ISA CONDITION!
 NAME CD0!
 C PS1=NIL!
 CNEXT CSTOP!
 SLOT1 NIL

AC3!
 ISA ACTION!
 NAME AC3!
 A PS1->AC2!
 ANEXT AC2!
 SLOT1 NIL

INSTR3!
 ISA INSTR!
 TASK SEMANTIC!
 CONDITION CD1!
 ACTION AC4!
 SLOT1 NULL!
 SLOT2 NULL!
 SLOT3 NULL!
 SLOT4 NULL!
 SLOT5 SAY!
 SLOT6 PROPERTY

AC2!
 ISA ACTION!
 NAME AC2!
 A CONST5->AC1!
 ANEXT AC1!
 SLOT1 NIL

AC1!
 ISA ACTION!
 NAME AC1!
 A PS1->RT2!
 ANEXT AC0!
 SLOT1 NIL

AC0!
 ISA ACTION!
 NAME AC0!
 A CONST6->RT1!
 ANEXT ASTOP!
 SLOT1 NIL

Actransfer Tutorial" � 5

out the action. We will discuss this function in more detail later. The final condition is a
retrieval for the number after the current count: (count-fact WMcount)->RT. This
specification also translates into two actions, in which the count-fact constant is put into
the first slot of the retrieval request, and the value in WMcount in the second retrieval slot. !

Note that, unlike in ACT-R, conditions are tested serially, and actions are carried out in the
order listed.!

The second and third operator do the rest of the counting: the second iterates as long as the
final number has not been reached, and the third operator terminates the count. Here we
see and example of the special Gtask slot: by setting the task to finish  
(finish->Gtask), we end the task.!

Running a model!
To run a model, load in the model file. You can run the model “manually” with the following
three commands:!

(set-task ‘count)!

(init-task)!

(run 100)!

By default, standard ACT-R tracing is off, because it will, even for this small model, produce
a long trace.You can switch on regular ACT-R tracing (sgp :v t) to see all the details
though (or looking at the buffer trace in the Environment after switching on :save-buffer-
trace) Instead, it is better to switch on Actransfer’s tracing (setf *verbose* t), and
ACT-R’s tracing off (sgp :v nil). The function!

(do-count 1)!

will do all that, and produce the following trace:!

*** 0.34: INSTR0: Initialize Count!

*** 1.57: ACTION: SAY TWO!

*** 1.69: Retrieving fact COUNT2: COUNT-FACT TWO THREE NIL!

*** 2.02: INSTR0: Initialize Count!

*** 2.30: Mismatch on condition CD0-1!

*** 2.41: INSTR1: Counting Step!

*** 3.79: ACTION: SAY THREE!

*** 3.82: Retrieving fact COUNT3: COUNT-FACT THREE FOUR NIL!

*** 4.19: INSTR2: Finalize count!

*** 5.06: ACTION: ANSWER FOUR!!!

Actransfer Tutorial" � 6

You can get some more detail in this trace by setting *verbose* to full (setf *verbose* ‘full).
Run (test-count) to see the result of that:!

*** 0.35: INSTR0: Initialize Count!

 0.49: Testing condition CD1: V1<>NIL!

 0.61: Testing condition CD0: PS1=NIL!

 0.73: All conditions matched!

 0.89: Carrying out action AC4: V1->PS1!

 1.02: Carrying out action AC3: PS1->AC2!

 1.13: Carrying out action AC2: CONST5->AC1!

 1.24: Carrying out action AC1: PS1->RT2!

 1.36: Carrying out action AC0: CONST6->RT1!

 1.49: All actions done!

*** 1.59: ACTION: SAY TWO!

*** 1.70: Retrieving fact COUNT2: COUNT-FACT TWO THREE NIL!

*** 1.98: INSTR1: Counting Step!

 2.11: Testing condition CD3: V2<>RT3!

 2.23: Testing condition CD2: PS1=RT2!

 2.40: All conditions matched!

 2.59: Carrying out action AC5: RT3->PS1!

 2.72: Carrying out action AC3: PS1->AC2!

 2.86: Carrying out action AC2: CONST5->AC1!

 2.99: Carrying out action AC1: PS1->RT2!

 3.11: Carrying out action AC0: CONST6->RT1!

 3.23: All actions done!

*** 3.38: ACTION: SAY THREE!

*** 3.42: Retrieving fact COUNT3: COUNT-FACT THREE FOUR NIL!

*** 3.79: INSTR2: Finalize count!

 3.91: Testing condition CD4: V2=RT3!

 4.08: All conditions matched!

 4.29: Carrying out action AC8: RT3->AC2!

 4.43: Carrying out action AC7: CONST5->AC1!

 4.55: Carrying out action AC6: CONST6->TASK0!

 4.68: All actions done!

*** 4.78: ACTION: ANSWER FOUR!!
In this trace all the individual conditions and actions are listed. !

If we run the model multiple times, for example (do-count 10), we can see that the model
gradually speeds up due to production compilation:!

 4.835!

 5.003!

 4.804!

 4.837!

Actransfer Tutorial" � 7

 4.842!

 4.438!

 4.323!

 4.843!

 4.816!

 4.116!

If you run the model multiple times, steps will start dropping out of the trace, because items
in the trace are triggered by a retrieval. Run the model 40 times (do-count 40), and then run
(test-count) again. You will see that many of the steps have dropped out, and the model is
quite a bit faster.!

Modeling Transfer!
The goal of Actransfer is, of course, to model transfer. We therefore need to specify at least
one additional model. The example is the Semantic model from unit 1. The goal of the
semantic model is to judge relationships between animals and animal categories, and answer
question like “Is a canary an animal”? The facts the model uses are:!

(p1 isa fact slot1 property slot2 canary slot3 bird)!

(p2 isa fact slot1 property slot2 shark slot3 fish)!

(p3 isa fact slot1 property slot2 bird slot3 animal)!

(p4 isa fact slot1 property slot2 fish slot3 animal))!

Answering the question involves two steps: first to retrieve that a canary is a bird, and then
that a bird is an animal. Even though this model is semantically different from count, it
shares the same type of iteration. The model is therefore similar:!

(add-task semantic :input (Vanimal Vcategory) :working-memory (WMcurrent) :declarative
((RTprop RTitem RTmember-of))!

:pm-function do-action!

:init init-semantic!

:reward 10.0!

:parameters ((sgp :lf 0.15 :egs 0.2 :ans 0.1 :rt -0.5 :alpha 0.2)) !

 (operator :condition (Vanimal<>nil WMcurrent = nil) :action (Vanimal->WMcurrent  
(say WMcurrent)->AC (property WMcurrent)->RT)  
:description "Retrieve first category")!

 (operator :condition (Vcategory<>RTmember-of WMcurrent = RTitem)  
:action (RTmember-of->WMcurrent (say WMcurrent)->AC  
(property WMcurrent)->RT) :description "Chain up")!

 (operator :condition (Vcategory = RTmember-of)  
:action ((answer yes)->AC finish->Gtask) :description "Match found")!

 (operator :condition (RTprop = error)  
:action ((answer no)->AC finish->Gtask) :description "No Match")))!

Actransfer Tutorial" � 8

The first two operators in this model are the same as in the counting model, with the
exception that the slot labels are different. But once the operators are translated into
declarative memory, the conditions and actions are identical (we can see this in the table on
page 5). The last two operators are different. If a match between the target category and the
retrieved category is found, the model should answer “yes”, which is slightly different from
finalizing the count. Also, if the proposition does not hold, the model will hit a retrieval
error at some point. On a retrieval error, the first slot of the retrieval buffer will be set to
error (which is, in the example, matched by (RTprop=error). !

Here is an example of a run of the model (through (do-semantic 1)):!

*** 0.63: INSTR3: Retrieve first category!

*** 1.98: ACTION: SAY CANARY!

*** 2.04: Retrieving fact P1: PROPERTY CANARY BIRD NIL!

*** 2.39: INSTR4: Chain up!

*** 3.72: ACTION: SAY BIRD!

*** 3.84: Retrieving fact P3: PROPERTY BIRD ANIMAL NIL!

*** 4.12: INSTR5: Match found!

*** 5.04: ACTION: ANSWER YES!

How do we assess transfer between these two models? A first option is to look at the overlap
of chunks in declarative memory between the two models. The figure on the next page gives
an impression of this overlap, which is considerable.!

To get a real sense of the amount of transfer, we have to run the model. We first run the
Count model a number of times, and then the Semantic model. To get some insight into
transfer, first run the count model 50 times (do-count 50), and then try out the semantic
model (test-semantic):!

*** 222.87: INSTR3: Retrieve first category!

 223.01: Testing condition CD0: PS1=NIL!

 223.12: All conditions matched!

 223.28: Carrying out action AC3: PS1->AC2!

 223.40: Carrying out action AC0: CONST6->RT1!

*** 223.45: ACTION: SAY CANARY!

*** 223.58: Retrieving fact P1: PROPERTY CANARY BIRD NIL!

*** 223.85: INSTR4: Chain up!

*** 224.05: ACTION: SAY BIRD!

*** 224.08: Retrieving fact P3: PROPERTY BIRD ANIMAL NIL!

*** 224.44: INSTR5: Match found!

 224.56: All conditions matched!

 224.72: Carrying out action AC9: CONST4->AC2!

 224.86: Carrying out action AC7: CONST5->AC1!

 224.99: All actions done!

Actransfer Tutorial" � 9

*** 225.09: ACTION: ANSWER YES!!
If you compare this trace to (test-semantic) without running count first, you will see that
quite a few steps have been skipped, even though this is the very first time we run semantic.!

A more systematic way of assessing transfer is by to compare latencies of the semantic
model with and without running count first. The (do-it n) function performs these runs and
prints a table. Here is the result of (do-it 10):!

Trial Count Sem-transfer Sem-control!

 1 4.8 4.0 5.0!

 2 4.7 5.5 6.6!

 3 5.1 4.4 4.8!

 4 4.8 5.6 6.7!

 5 5.2 3.7 4.6!

 6 5.0 5.0 6.1!

 7 4.5 4.2 4.5!

 8 4.8 5.2 5.7!

 9 4.7 3.9 4.2!

 10 4.0 5.3 5.3!

Actransfer Tutorial" � 10

INSTR6

RT1=CONST1

INSTR5

CONST4−>AC2

INSTR4

INSTR3

SEMANTIC

INSTR2

RT3−>AC2

CONST5−>AC1

CONST6−>TASK0

V2=RT3

INSTR1

RT3−>PS1

V2<>RT3

PS1=RT2

INSTR0

V1−>PS1

PS1−>AC2

CONST5−>AC1

PS1−>RT2

CONST6−>RT1

V1<>NIL

PS1=NIL

COUNT

CONDITION
ACTION
SEMANTIC
COUNT

This table clearly shows that in the transfer condition case (Sem-transfer) performance is
faster than in the control condition (Sem-control). Try different numbers of n to see what
difference that makes. Note that the semantic model alternates between two queries that
take different amounts of time, therefore the reaction times in the table fluctuate.!

Perception and Action!
Actransfer uses a simplified version ACT-R’s perception and motor modules. This means
that some of the precision is lost, but on the other hand that it is easier to program the
experiment part of the model. An Actransfer model needs two functions: an initialization
function, and a perceptual/motor function.!

The initialization function is called every time the (init-task) function is called. This sets up
a new trial or block of trials. Like in ACT-R, you have two choices: you either call the
function for each trial in the experiment, or you call it for every block of trials. You typically
do the former if trials are independent (like in our examples here), but the latter if they are
not (in, for example, task switching). !

In the most simple case, the init function just sets up the perceptual input, or the initial
perceptual input. This is the case in the count example:!

(defun init-count ()!

 (setf *perception* '(two four))!

)!

Whatever you put in the *perception* global variable will be put into the input slots of the
model. The semantic function is slightly more complex: it alternates between two types of
trials.!

The perceptual/motor function is called every time your model puts something in the AC
buffer. The action and two optional parameters are passed on to your function. Your
function is expected to return a latency (in seconds) of the action. For example, in the count
example, the function sets the latency to 0.3 seconds, and gives the reward if the action is
“answer”:!

(defun do-action (action &optional h1 h2)!

 (when (eq action 'answer) (issue-reward)) ;; give a reward!

 0.3)!

The (issue-reward) function is a predefined function that gives ACT-R the reward you
specified in the model specification.!

In more complex models, actions will have an effect on perception. For example, the subject
presses a key, and as a response the display changes. This is accomplished by changing the

Actransfer Tutorial" � 11

value of the *perception* parameter. As a simple example, in the assignment you will have to
make a model that adds two numbers using fingers to track some of the counting. Part of
perception is therefore the current number of fingers, and the “add-finger” action adds a
finger. We will therefore keep track of the current number of fingers in a global variable
fingers, and add one to it each time an add-finger action is carried out:!

(defun do-action-fingers (action &optional h1 h2)!

 (when (eq action 'add-finger)!

 (incf *fingers*)!

 (setf *perception* (list (first *perception*)(second *perception*)(nth *fingers*

'(zero one two three four five six seven eight nine ten)))))!

 (when (eq action 'answer) (issue-reward)) ;; give a reward!

 0.3)!

In this example, the first two items in *perception* are the two numbers to be added, and
the third is the current number of fingers. An add-finger action increments *fingers*, and
updates the third item in the list of *perception* accordingly.!

Assignment!
The assignment is to add a model of addition by counting to the existing two models, and to
assess transfer between counting and addition.!

There are two possible solutions to explore. The first is a direct translation of the unit 1
model into Actransfer. The two numbers to be added are perceptual input, and two WM
slots are needed to hold the current count and the current sum.!

Here is a part of the solution, you’ll have to provide the remaining three operators:!

(add-task add :input (Vaddend1 Vaddend2) :variables (WMcount WMsum) :declarative

((RTcount-fact RTfirst RTsecond))!

:pm-function do-action!

:init init-add!

:reward 10.0!

:parameters ((sgp :lf 0.15 :egs 0.2 :ans 0.1 :rt -0.5 :alpha 0.2)) !

(operator :condition (WMcount = nil) :action (zero -> WMcount Vaddend1 -> WMsum  
(say WMcount) -> AC (count-fact WMcount) -> RT) :description "Initialize sum and
count, retrieve next count")!

[... add your own code here ...]!

)!

In the last operator, use the “answer” action to give the answer (as in:  
(answer WMsum) –> AC)!

Actransfer Tutorial" � 12

If your solution is similar to mine, you will find that there is some, but not very much
transfer from count to addition (run (do-it-add-single 10) to get this):!

Trial Count Add-transfer Add-control!

 1 5.0 10.7 11.9!

 2 5.0 10.4 11.7!

 3 4.9 10.5 10.9!

 4 5.1 10.3 10.7!

 5 4.5 9.9 9.7!

 6 4.5 8.7 9.8!

 7 4.5 9.1 9.8!

 8 4.6 9.6 9.8!

 9 4.4 8.9 9.0!

 10 4.0 7.8 9.5!

The declarative memory graph (on the cover) also shows very little overlap between the two
models. Part of the reason is that the model uses two counters, and switches back and forth
between them. Apart from not producing much transfer, there is also evidence that people
are not so flexible in retaining two counters.!

A different solution is to use an external means of counting for one of the counters (i.e.,
fingers), and do the other one mentally. For this we need the “add-finger” action discussed
earlier, and we arrive at a model like:!

(add-task add-fingers :input (Vaddend1 Vaddend2 Vfingers) :variables

(WMsum) :declarative ((RTcount-fact RTfirst RTsecond))!

:pm-function print-action-fingers!

:init init-add-fingers!

:reward 10.0!

:parameters ((sgp :lf 0.15 :egs 0.2 :ans 0.1 :rt -0.5 :alpha 0.2)) !

(operator :condition (Vaddend1<>nil WMsum = nil) :action (Vaddend1 -> WMsum  
(add-finger WMsum) -> AC (count-fact WMsum) -> RT)  
:description "Initialize sum, put up first finger")!

[... Add two more operators...]!

)!

Again, you will have to provide the remaining operators. Note that the “(add-finger
WMsum)” action actually performs two actions in parallel: it adds a finger, and it says
WMsum. The current number of fingers is in Vfingers, and your operators should access
that value. If your model is similar to mine, transfer will be better, which you can check
using (do-it-add-both n). Here is the result of my version of the model, which I ran with
n=50 (only the first 10 trials are shown):!

!

Actransfer Tutorial" � 13

Trial Count Add-transfer Add-control Add-fingers-transfer Add-fingers-control!

 1 4.8 9.6 12.0 4.3 7.0!

 2 5.2 9.6 11.7 4.1 6.5!

 3 5.0 9.4 11.1 4.9 6.9!

 4 4.8 9.4 10.7 4.3 6.4!

 5 4.8 8.8 10.2 3.9 5.8!

 6 4.8 9.5 10.2 4.5 5.3!

 7 4.5 8.6 9.2 3.9 5.5!

 8 4.6 7.7 9.2 3.9 5.6!

 9 4.4 8.0 9.5 4.5 4.9!

 10 4.3 6.8 8.9 4.0 5.0!!

Actransfer Tutorial" � 14

