
Hierarhial Mixtures of Naive Bayesian Classi�ersTehnial Report: UU-CS-2003-003Maro A. Wieringmaro�s.uu.nlIntelligent Systems GroupUtreht UniversityAbstratNaive Bayesian lassi�ers tend to perform very well on a large numberof problem domains, although their representation power is quite limitedompared to more sophistiated mahine learning algorithms. In this pa-per we study ombining multiple naive Bayesian lassi�ers by using thehierarhial mixtures of experts system. This system, whih we all hi-erarhial mixtures of naive Bayesian lassi�ers, is ompared to a simplenaive Bayesian lassi�er and to using bagging and boosting for ombiningmultiple lassi�ers. Results on 19 data sets from the UCI repository in-diate that the hierarhial mixtures arhiteture in general outperformsthe other methods.Keywords: Naive Bayesian Classi�ers, Hierarhial Mixtures of Experts,Bagging, Boosting, Mahine Learning.1 IntrodutionDespite their simpleness, naive Bayesian lassi�ers (Duda and Hart, 1973) ingeneral obtain highly ompetitive results ompared to deision trees (Quinlan,1993), neural networks trained with bakpropagation (Rumelhart et al., 1986),instane-based learning algorithms, and other indutive learning algorithms,see (Domingos and Pazzani, 1997) for a omparison study. Reently there isa lot of interest from the automati text ategorization ommunity to use thenaive Bayesian lassi�er beause of its advantages of learning speed, simpleness,memory usage, inrementality, and good results (MCallum et al., 1998). Thenaive Bayesian lassi�er (NBC) works well on a wide range of problems, and isoptimal when attributes are independent given the lass. However, in real datasets, the independeny assumption is often violated, but Domingos and Pazzani(1997) show that even if that is learly the ase, the naive Bayesian lassi�ermay still be optimal under the zero-one loss funtion. E.g. NBCs an optimallylearn data sets desribed by onjuntions or disjuntions of literals, althoughthese domains violate the independeny assumption. However, the simple NBClearns a linear disriminant funtion and is therefore unable to learn linearly1



inseparable data suh as the exlusive OR problem. Some approahes to over-ome this problem ombine attributes (Pazzani, 1996), but when there aremany attributes, the algorithm needs to be exeuted many times, resulting inslow learning in ase multiple attributes need to be ombined. Furthermore,ombining too many attributes results in large representations and worse gen-eralization performane. Instead, we opt for an algorithm whih an deal withnon-linearly separable data in a more prinipled way.Hierarhial models. To solve the exlusive OR problem, we an usehierarhial arhitetures, just like linear networks have led to multi-layer per-eptrons. Our urrent work is similar to the hierarhial mixtures of experts(HME) algorithm (Jaobs et al., 1991; Jordan and Jaobs, 1992). The HMEarhiteture an onsist of linear networks and is still able to learn non-linearfuntions. Instead of using linear networks as models, we use naive Bayesianlassi�ers. Thus, we have an arhiteture onsisting of gating NBCs whihpartition the data and weight the expert NBCs prediting the lass probabili-ties. This results in a muh more powerful lassi�er whih is able to deal withnon-linearly separable data.Combining models. There exist a number of general algorithms whihalso learn multiple models (lassi�ers) and ombine them to produe the �nalresult. One method is staked generalization (Wolpert, 1992) whih ombinesindued models from the bottom layer to the top-layer, where independentmodel errors are used to selet models for prediting the answer to a query.Staked generalization an be seen as a meta-theory for ombining models,but it is not entirely lear how it an be used for ombining NBCs. Anotheralgorithm is bagging (Breiman, 1996) whih learns a set of independent modelsby �rst bootstrapping the data to get a training set and then induing a newNBC on this data set. This is then repeated a number of times. The models arethen ombined by using majority voting of the predited lasses. This methodan improve generalization performane, but does not lead to more powerfulrepresentations. Another method whih reeives a lot of attention is boosting(Freund and Shapire, 1996; Shapire et al., 1997) whih sequentially induesa set of models where the data is reweighted after induing eah new lassi�er.This is done so that mislassi�ed examples get higher weight in the trainingdata for the next lassi�er. By ombining multiple lassi�ers through voting,individual errors are orreted by the other lassi�ers. Some experiments (Bauerand Kohavi, 1999) have shown boosting to work better than bagging with NBCs(and also with deision trees) on a variety of data sets and to improve NBClassi�ation auray substantially on a number of data sets from the UCIrepository (Merz et al., 1997). A problem with these methods, however, isthat the single NBCs still have to be able to learn the training data, whihthey annot in ase of the exlusive OR problem. Although boosting theorypredits that the training data an be perfetly loaded, it annot perfetly loadall data sets with NBCs (Bauer and Kohavi, 1999). Therefore, the additionalrepresentation power when using the hierarhial mixtures of NBCs an bebene�ial for partiular data sets.Contents. In setion 2, we desribe naive Bayesian lassi�ers (NBCs). Insetion 3, we desribe hierarhial mixtures of NBCs. In setion 4, we ompare2



the single NBC to bagging, boosting and using the novel hierarhial mixturesof NBCs on 19 supervised data sets from the UCI repository. In setion 5, wedisuss related work. Finally, setion 6 onludes this paper.2 Naive Bayesian Classi�ersNaive Bayesian lassi�ers make an independeny assumption to make full Bayesianlearning feasible. A representation in whih full dependeny is modelled be-tween the attributes would require an exponential amount of spae to store andan exponential amount of time and data to learn. Other statistial learningalgorithms use a set of independeny relations to onstrut a ompat Bayesiannetwork (Hekerman et al., 1995), although exat inferene is still an NP-hardproblem (Dagum and Luby, 1993). Naive Bayesian lassi�ers make a full in-dependeny statement and this makes them very fast to train and ompat tostore. This means that storing a large number of examples with many featuresbeomes an easy task with suh methods. Although the full independeny as-sumption makes the model less powerful, NBCs still tend to perform very wellon real world data sets. Domingos and Pazzani (1997) analyse why this is thease, and their �ndings are that although the bias (omponent of the error foran in�nite sample) of NBCs is larger than the bias of more powerful learningalgorithms, the variane (omponent of the error due to the sample's �nite size)of NBCs is smaller. Sine the variane dereases with a growing number of ex-amples, NBCs may outperform other algorithms when the data sets are quitesmall. Furthermore, sine the disriminant power of NBCs inreases with agrowing number of attributes, the NBC should be partiularly favoured whenthe sample size is small and the number of attributes is large. These are alsoexatly the kind of problems for whih more powerful indutive learners tendto over�t the data resulting in poor generalization performane.2.1 Naive Bayesian Classi�ersThe learning problem is to map a set of features D = ff1; f2; : : : ; fng de-sribing an instane to its orret lass-label C. For this the learning al-gorithm �rst indues a model (lassi�er) by learning on the training data(D1; C1); (D2; C2); : : : ; (DT ; CT ).Statistial learning algorithms perform the lassi�ation by �rst omputinglass probabilities P (Cjf1; f2; : : : ; fn) of all output lasses C given the inputfeatures, and then seleting the lass with maximal probability. We annot storethese probabilities diretly 1, sine this would require an exponential amountof storage spae and the result would not be useful for generalization. Instead,we �rst use Bayes' rule to ompute:P (Cjf1; f2; : : : ; fn) = P (f1; f2; : : : ; fnjC)P (C)P (f1; f2; : : : ; fn)1This would resemble root learning. 3



and to derease the size of this model we use the naive Bayes hypotheses ofmutual independeny among the features given the lass:P (f1; f2; : : : ; fnjC) = �i P (fijC)Now we have P (Cjf1; f2; : : : ; fn) = �P (C) �i P (fijC)where � is a normalization onstant to sum all lass probabilities given the fea-tures to 1.0. Basially the naive Bayesian lassi�er an also be seen as a produtnetwork, where the bias is the lass probability and weighted inputs are nowmodelled as features probabilities whih are determined by a tabular represen-tation. Thus, for nominal features the simple naive Bayesian lassi�er an learna linear deision boundary2, and therefore has the same representational poweras a pereptron.2.2 Learning AlgorithmThe learning algorithm is simple and uses a set of ounters3 to store all infor-mation. We de�ne:P (C) = (C)tot ; and Pi(fijC) = i(fi; C)(C)To deal with the problem of having unobserved (feature-value, lass) pairs inthe training data, we use some parametrized Laplae orretion. For this, weinitialize the ounters to some small value , and sum over them to get thetotals. Now on eah learning example (ff1; f2; : : : ; fng; C�), we use the followingalgorithm to update the parameters:Updating NBC(ff1; f2; : : : ; fng; C�; weight):1) (C�) += weight2) tot += weight3) For all k = 1 : : : n3a) k(fk; C�) += weightHere the weight will be useful for de�ning the forthoming algorithms. For thesingle naive Bayesian lassi�er we use a weight of 1.0. Note that the algorithmis just using frequeny ounting, and a small prior () is used to initialize themodel.3 Hierarhial Mixtures of Naive Bayesian Classi-�ersThe hierarhial mixtures of experts system of Jordan and Jaobs (1992) on-sists of a number of gating networks and expert networks. The gating networks2For numeri attributes deision boundaries ould be non-linear due to the disretizationmethod used.3The ounter variables (C) et. are represented as real numbers.4



learn to gate the preditions of experts to the top layer network whih makesthe �nal predition. The expert networks will speialize on a partiular sub-spae of the full input spae, whereas the gating networks learn whih expertperforms best on a given example. We use the same system, but now we usenaive Bayesian lassi�ers (NBCs) instead of linear neural networks as gatingand expert models.3.1 ArhitetureWe will explain a 2-layer arhiteture. Extensions to higher layer arhiteturesare trivial. The system onsists of 1 root gating NBC m0, N gating NBCs m11to mN1 , and N �M expert networks m112 to mNM2 . Have a look at �gure 1whih depits a two-layer arhiteture in whih the gating networks have twosub-models (hildren).
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Figure 1: The 2-layer arhiteture onsisting of naive Bayesian lassi�ers. Thegating NBCs weight the outputs of their sub-models and propagate the weightedsum to the gating network one layer above. Expert NBCs estimate the lassprobabilities �ij given the features.Expert NBCs mij2 output lass probabilities given the input features desribingthe instane D. The lass probabilities an be modelled as a vetor ~�ij =(�C1ij ; �C2ij ; : : : ; �CKij ), where:�Cij = P ij2 (CjD) = �P ij2 (C)�kP ij2 (fkjC)Here � is again a renormalization onstant. The top-layer gating NBC m0omputes the following gating values for its sub-models Mi:gi = P0(MijD) = �P0(Mi)�kP0(fkjMi)and gating NBCs mi1 ompute output gating values by:gjji = P i1(Mj jD) = �P i1(Mj)�kP i1(fkjMj)5



So the gating NBCs essentially treat their submodels as lasses; they try tolassify an instane as the best performing sub-model.Our arhiteture now onsists of ounters for all models. For model mij2 weuse totij2 et. as ounter variables. The omplete model should be initializedwith some symmetry breaking ounter generator (e.g. by adding a small randomvalue to the initialization value ).We want to ompute the lass probabilities of the root network given theinput data D = ff1; f2; : : : ; fNg. For this we have to ompute lass probabilitiesby propagating the preditions of the experts to the top. The output of theomplete arhiteture an be omputed as:~� =Xi giXj gjji ~�ijFor training this system, the gating networks have to predit how well theirsub-models perform given some input data, and let the gating weight of thebest model onverge to the highest value among the models.3.2 Learning by Expetation MaximizationExpetation Maximization (Dempster et al., 1977) is a well known method formultiple model �tting in whih mixture oeÆients of the loal mixture modelsare learned. The weights for seleting eah model are latent variables, sinethey annot be estimated diretly from the data. Instead a ouple of iterationsan be performed in whih the latent variables an be estimated by monitoringthe error of individual models. The total probability of generating the outputlass probabilities is omputed by mixing the expert lass probabilities throughthe gating networks given the parameters:P0(CjD) =Xi giXj gjjiP ij2 (CjD)Posterior probabilities. To develop the learning algorithm, we need toompute posterior probabilities that eah model has generated the right outputlass C�. For this we ompute:hi = giPj gjjiP̂ ij2 (C�jD)Pi giPj gjjiP̂ ij2 (C�jD)and hjji = gjjiP̂ ij2 (C�jD)Pj gjji ^P ij2 (C�jD)where we use a Gaussian regression model for omputing the probability thatexpert network mij2 generated C�:P̂ ij2 (C�jD) = e��(1:0�P ij2 (C�jD))We ould also have used other distributions suh as the Bernoulli distribution,but seleted the Gaussian regression model due to its general appliability to6



multiple lasses. Furthermore, using this model gives us more inuene toontrol the learning speed in whih models start to deviate from eah other. Forthis we an set � whih in our experiments was set to a small value (0.1) so thatone model would not immediately learn muh faster on data of a partiular lass(for whih the loal model may have learned a higher a-priori lass probability).We �rst ompute the posterior values (Expetation step), and then we up-date the gating models so that the best model will get a higher weight on theexample, and we update the lass probabilities of experts to the real lass a-ording to their posterior probabilities (Maximization step). We will not usegradient desent learning here, sine we expet it to learn slow due to theprodut networks (the gradient would be omputed by multiplying all P (fijC)values, some of whih may be very small). Instead we use the naive Bayesianlassi�er update sheme. Note that we perform the EM step after eah exam-ple, thus we have an online stohasti learning algorithm. Also, sine we usethe naive Bayesian lassi�er, the algorithm does not really maximize the prob-ability of generating the orret lass label, but rather makes a small step toinrease this probability. The algorithm is therefore a generalized EM or GEMalgorithm (Jordan and Jaobs, 1992).Updating the expert models. After having omputed the lass proba-bilities for eah model and having omputed the posterior probabilities for allmodels (exept the root model), we an adapt the models.We update the expert networks using the NBC updating sheme. Hereexpert network mij2 has parametersP ij2 (C) = ij2 (C)totij2 ; and P ij2k(fkjC) = ij2k(fk; C)ij2 (C)We update the ounter variables given an example X = (D;C�) by using theNBC updating sheme. To do this we all Update-NBC(D;C�; hihjji) foreah modelmij2 . Thus, the weight of the update equals the posterior probabilitythat the expert network ould have generated the orret lass. Updating inthis way, auses expert networks with the largest posterior probability (hihjji)to learn the example fastest and to bias its funtion more to this example. Allexpert networks learn on eah example.Updating the gating models. For updating the gating networks, wemake use of the best preditive sub-model as the desired output of the lassi-�er, so that the update auses this model to be seleted with a higher prob-ability. The best sub-model Mb has the largest probability of generating C�.For the top-layer model we update the model parameters by alling: Update-NBC(D;Mb; 1:0). Thus, the best sub-model is now the orret lass, and theweight of updating towards this model on this example is 1.For the sub-gating networks, we multiply the learning weight of 1.0 by theposteriori probability hi to obtain the learning weight. We again ompute thebest sub-model of eah sub-gating network, and all this Mb. Then we updatethe parameters of model mi1 by alling: Update-NBC(D;Mb; hi).Solving the exlusive OR problem. Before running experiments on realworld data sets, we �rst analysed whether the hierarhial mixtures of NBCs was7



able to learn the exlusive OR problem and the 4-bit parity problem. Learningthe exlusive OR problem was no problem at all for a one layer arhiteture |it was always able to load the training patterns. For learning the 4-bit parityproblem, we had to use higher layer arhitetures. The smallest arhiteturewhih an represent the 4-bit parity problem is a 4-layer arhiteture in whihthere are always two submodels for eah gating network. However, this minimalmodel ould not learn the 4-bit parity problem with the parameters we used.Then we tried 6 and 7-layer arhitetures, and these were able to reliably learnthe 4-bit parity problem. Thus, these experiments showed that the hierarhialmixtures of NBCs is able to learn non-linearly separable data sets.4 ExperimentsWe have tested the hierarhial mixtures of naive Bayesian lassi�ers on 19 datasets from the UCI repository. We preproessed ontinuous (and nominal datawith large values) by using the mean and standard deviane and omputing sig-ni�ane lasses using 1 standard deviation as a separator between two featurevalues.4 The data sets are given below in table 1.Experimental setup. We ompare the hierarhial mixtures of naiveBayesian lassi�ers (HM) to the simple naive Bayesian lassi�er, bagging andboosting. For the HM arhitetures, we used a single layer arhiteture onsist-ing of 4 expert networks, and a 2-layer arhiteture onsisting of 2 � 2 expertnetworks. We performed experiments with bagging and boosting in whih thenumber of models was 10. We did not explore whether using more models (e.g.50) worked better for two reasons: (1) The hierarhial systems would be muhsmaller and therefore faster to use, (2) We also did not use results of largerhierarhial arhitetures whih may sometimes have worked better. Finally,we expet the sign of signi�ant di�erenes between the methods to remain thesame in ase a muh larger number of models would have been used.Our algorithms for bagging and boosting were similar to the ones desribedin (Bauer and Kohavi, 1999), but di�ered in some aspets. For bagging, wedid not always bootstrap a new data set whih was equal in size to the originaldata set. We rather experimented with using perentages of the original dataset, and found that sometimes bagging worked best when only 20% was usedfor eah data set. Most often, however, we used about 90% of the original dataset size for bootstrapping (with replaement).For boosting, Bauer and Kohavi (1999) used bootstrapping on the originaldata set in ase the error of a lassi�er was larger than 50%. Instead, wereweighted the original data set with values between 0.9 and 1.1, and usedthe new reweighted data set for learning the next lassi�er. Thus instead ofresampling we used reweighting, whih should not di�er a lot.We performed 50 simulations per data set in whih always half of the data4Comparing our results to published results of possibly better approahes for disretizingthe features suh as entropy-based disretization, shows that there is usually only a slightderease in learning performane. See also the omparison study in (Domingos and Pazzani,1997). This will not a�et our urrent omparison study, however.8



Data Set Nr. of Classes Nr. of Features Nr. of InstanesAbalone 14 9 4177W. Breast Caner 2 9 699Car 4 6 1728Chess kr-vs-kp 2 36 3196Contraeptive 3 9 1473Eoli 8 7 336Glass 8 9 214Hepatitis 2 19 155Housing 5 13 506Ionosphere 2 34 351Iris 3 4 151Liver Bupa 2 6 345Pima Indians 2 8 768Segmentation 7 19 210Servo 5 4 167Soybeans 20 35 675Spam 2 57 4601Vote 2 16 435Yeast 10 8 1484Table 1: The nineteen data sets from the UCI repository.set was used for learning and the other half was used for testing. We used 5 EMiterations for eah hierarhial system, in whih during 1 iteration the ompletetraining data was learned in an online fashion. We kept all learning parametersonstant for all data sets:  = 0:1 + rand(0; 0:01), � = 0:1.Test results. Table 2 shows the test results on the 19 data sets. The tableindiates the perentages of orret lassi�ations with the standard deviane,and signi�ane of the results. Here (++) indiates a signi�ant improvement(t-test, p < 0:01) and (+) a signi�ant improvement (p < 0.05) ompared to thesimple NBC. The win-loss row indiates how often the mixtures of NBC, baggingor boosting signi�antly (p < 0:05) work better or worse than the simple naiveBayesian lassi�er. The average error redution (Bauer and Kohavi, 1999) isomputed by �rst omputing the error redution (ea�eb)ea , where ea is the errorof the simple NBC, for eah data set and then omputing the average.The results show that the hierarhial mixtures of NBCs signi�antly out-perform the simple NBC on 8 data sets and loose on 2 data sets. Furthermore,they inrease the average auray with more than 1%, and redue the aver-age error with about 7%. Although the di�erenes may seem quite small, theyare signi�ant, and for some data sets the simple NBC already seems to reahthe highest possible test performane5, so that it is diÆult to improve on this.5In other omparison studies with other learning algorithms, there also seems to be thesame maximal auray for these partiular data sets.9



Data Set NBC 1-4 HM 2-2 HM Bagging BoostingAbalone 68.6�1.2 71:8 � 1:3++ 71:7 � 1:0++ 68:9 � 1:2= 68:5 � 1:5=Breast Caner 97.2�0.6 97:0 � 0:7= 96:6 � 0:8�� 97:3 � 0:7= 95:8 � 0:9��Car 84.8�1.6 89:4 � 1:2++ 88:3 � 1:6++ 83:3 � 1:6�� 89:9 � 1:2++Chess 87.1�1.1 91:6 � 1:8++ 92:7 � 1:7++ 87:2 � 1:5= 94:5 � 0:8++Contraeptive 51.4�1.2 51:8 � 1:4= 51:5 � 1:5= 50:9 � 1:6= 51:0 � 1:5=Eoli 73.8�2.8 73:1 � 3:8= 73:5 � 3:5= 73:8 � 3:2= 73:3 � 3:2=Glass 48.5�5.1 51:0 � 5:3+ 51:9 � 5:2++ 50:9 � 4:9+ 51:0 � 5:7+Hepatitis 85.5�2.8 83:2 � 3:6�� 82:8 � 3:5�� 84:4 � 3:2= 82:2 � 3:6��Housing 59.3�2.3 63:5 � 3:8++ 67:7 � 2:5++ 61:4 � 3:5++ 59:7 � 2:7=Ionosphere 90.0�1.8 91:3 � 1:4++ 91:0 � 2:2+ 90:1 � 1:5= 90:2 � 2:3=Iris 90.2�3.5 90:1 � 2:9= 90:1 � 3:5= 89:2 � 2:6= 90:0 � 2:4=Liver Bupa 60.0�3.0 60:8 � 3:0= 60:3 � 3:1= 58:4 � 2:9�� 60:5 � 3:1=Pima Indians 75.0�1.4 74:2 � 2:3� 75:0 � 1:6= 75:2 � 2:0= 73:3 � 2:1��Segmentation 78.7�4.0 79:3 � 5:6= 79:7 � 6:4= 78:6 � 4:8= 77:8 � 5:4=Servo 82.3�4.2 83:0 � 3:8= 82:1 � 3:3= 80:2 � 4:9� 82:6 � 3:7=Soybeans 89.5�2.2 91:6 � 2:4++ 91:5 � 2:6++ 90:1 � 1:9= 91:3 � 1:9++Spam 90.9�0.4 91:0 � 0:5= 91:1 � 0:1= 90:6 � 0:5= 90:2 � 0:7��Vote 90.6�1.7 92:7 � 1:7++ 93:3 � 2:3++ 90:4 � 1:5= 94:1 � 1:5++Yeast 56.6�1.1 57:1 � 1:4= 57:0 � 1:3= 56:2 � 1:5= 56:5 � 1:5=Average : 76.8 78.1 78.3 76.7 77.5Av. error red. - 6.7 6.6 -1.5 3.2Sign. Win-loss : - 8 : 2 8 : 2 3 : 3 5 : 4Table 2: The Training results on the 19 data sets.However, for partiular data sets the improvements are quite large and for someof these data sets we found that larger HM arhitetures even worked better.When we examine bagging, we an see that it sometimes works better thanthe NBC, but as many times works worse (espeially for data sets with fewfeatures), so there is no real improvement in ombining bagging with NBCs ingeneral. This an be expeted, sine NBCs are quite stable lassi�ers, so thatombining multiple lassi�ers is not so e�etive, and an sometimes even reduelearning performane sine less data of the original data set may be e�etivelyused for learning eah lassi�er.Boosting outperforms the NBC signi�antly in a number of domains suhas Car, Chess, and Vote6, but on many other data sets does not lead to an im-provement. In some domains, boosting even results in a larger error. We havefound that this is aused by 2 problems: (1) Boosting sometimes leads to over-�tting the data, where the training data is perfetly loaded, but generalizationperformane is redued (whih happened for e.g. Breast Caner and Hepati-tis), (2) Boosting has problems with some domains suh as Spam, beause afterinduing 1 lassi�er, the next one always has a weighted error sum larger than50% on the reweighted data. Therefore, boosting on suh data sets does not6A omparison with other published results shows that deision trees often outperformNBCs in these domains. 10



lead to a ollaboration between voting lassi�ers, but stand-alone lassi�ers arelearned.If we look at the domains in whih boosting outperforms the simple NBC, weobserve that the hierarhial mixtures systems also outperform the simple NBC.This is remarkable and is probably aused by the fat that for these domains asmaller error on the training data also means a smaller error on the test data.Sine boosting and the hierarhial mixtures always redue the training errorompared to the simple NBC, their generalization performane depends on theatual domain (and the limited training data we used). Boosting improvesthe average auray, but performs on average less well than the hierarhialmixtures systems.We also experimented with boosting hierarhial mixtures of NBCs. Al-though, for some domains this worked very well, the average auray for alldata sets was the same as for the hierarhial mixtures of NBCs alone. Fi-nally, we also tried to learn the gating values after a number of expert networkswere learned by boosting. Sine boosting weights eah indued lassi�er bytheir average error, this does not indiate for what kind of data the lassi�erworks well. Learning to weight these lassi�ers for eah example might thereforebe useful. The preliminary experiments indiated that using the hierarhialmixtures of NBCs after learning eah lassi�er by boosting, did not result inimproved average performane ompared to boosting, however.5 Related WorkThere have been a number of approahes to extend the naive Bayesian lassi�eror to ombine models. Domingos (2000) used Bayesian model averaging, where�rst a set of lassi�ers are indued, and then weights for ombining the modelsare estimated by omputing the error probability of eah lassi�er. This methoddoes not use di�erent weights for di�erent examples, however. The experimentsshowed that this often led to over�tting the data.Bauer and Kohavi (1999) used the NBC and ombined it with bagging,boosting and some variants suh as aring (Breiman, 1998). They showed thatbagging NBCs ould slightly improve the results on the data sets they used, andthat boosting NBCs signi�antly redued the test error. Our experiments showmuh less advantage for using bagging and boosting, but this may be ausedby the fat that Bauer and Kohavi used di�erent data sets with muh moreexamples (all data sets they used had at least 1000 examples). Furthermore,naive Bayesian lassi�ers are stable learning algorithms, and that is why weannot expet a great bene�t from using bagging. We also found that boostingsometimes leads to over�tting the data, where the algorithm ould perfetlyload the training data, but an inrease in test error ourred.Kohavi (1996) studies using deision trees with naive Bayesian lassi�ersat the leave nodes (NBTree). The experiments showed that the ombinationworked better than either algorithm alone. Ting and Zheng (1999) also om-bined deision tree learning with naive Bayesian lassi�ers at the leave nodes,but found that induing trees with more than one node, worked less well than11



the simple NBC alone. Then they applied boosting to the NBC and to NBTree,and found that boosting NBCs did not result in any improvement of the aver-age auray over all data sets they used. Boosting NBTree worked very well,however, and signi�antly outperformed the simple NBC. They explain theseresults by the fat that NBTree inreases instability (the bias is smaller and thevariane is larger) so that boosting may result in better performane. It wouldbe interesting to ompare the boosted NBTree to the hierarhial mixtures ofNBCs desribed in this paper, or to ombine both algorithms.Zheng (1998) uses a ommittee of naive Bayesian lassi�ers in whih eahdi�erent NBC has a di�erent subset of attributes. His method selets attributesso that attributes used by one lassi�er whih performs well on the data set arealso used with higher probability by the next lassi�er. The results show thatthe ommittee an signi�antly outperform the simple NBC on partiular datasets from the UCI repository. These ommittees annot learn to lassify non-separable data sets, however.Zheng, Webb and Ting (1999) developed lazy Bayesian rules, a lassi�ersystem whih evaluates test examples in a lazy way. Instead of building ageneral lassi�er on the training data, the training data is stored in memory,and if an example needs to be lassi�ed a new lassi�er is onstruted. Thisis done by using a onjuntive rule on attribute values. Di�erent onjuntiverules are onstruted and from the training data whih obey the rule, a naiveBayesian lassi�er in onstruted. To hoose among the possible onjuntiverules, N-fold ross validation is used. The lazy Bayesian rules system is shownto outperform the simple NBC and performs on average as well as boostingdeision trees. Sine for eah test example, a new lassi�er should be indued,the method uses more omputation time, however, than boosting 100 deisiontrees in ase many test examples need to be lassi�ed.MCallum et al. (1998) use a hierarhial model of NBCs for text lassi�-ation problems. The hierarhy whih was used ame from the used internetprovider (e.g. Yahoo), and a form of expetation maximization was used to�t a set of mixture oeÆients to selet sub-models responsible for generat-ing a doument. Furthermore, they used shrinkage as a statistial tehniqueto deal with expert NBCs whih reeive only few examples. The experimentson three real-world data sets showed improved performane ompared to thesimple naive Bayesian lassi�er.Stewart (1998) developed an algorithm whih inludes hidden variables tothe naive Bayesian lassi�er. The latent variables are learned by a maximumlikelihood algorithm, but he does not use hidden variables to selet or ombinemodels. Instead, the hidden variables are used to approximate the joint distri-bution of a set of variables. This method outperforms the simple NBC on somedata sets from the UCI repository.Meila and Jordan (2000) desribe an algorithm whih learns mixture oef-�ients for ombining a set of tree distributions. Tree distributions (Chow andLiu, 1968) are speial ases of graphial models in whih both parameter andstruture learning are tratable. The mixture-of-trees model provides an e�e-tive generalization of tree distributions in whih di�erent dependenies betweenthe variables an be modelled by di�erent trees. Like graphial models, this12



method an be used for density estimation and lassi�ation, but due to itswider appliability, the mixture oeÆients were not onditioned on the inputof an example, whih may ontain many unknown values.7 The experimentsshow that the algorithm outperforms a large number of other algorithms suhas the hierarhial mixtures of experts and the simple NBC.6 ConlusionWe introdued the hierarhial mixtures of naive Bayesian lassi�ers whih isbased on the hierarhial mixtures of experts system where all networks arenaive Bayesian lassi�ers. We have shown that the hierarhial extension anlearn to lassify non linearly separable data, whih a simple naive Bayesian las-si�er annot. In the experiments we ompared the novel hierarhial system tothe at naive Bayesian lassier and two other tehniques for ombining multiplelassi�ers | bagging and boosting. The experimental results on 19 data setsfrom the UCI repository show that the hierarhial mixtures of naive Bayesianlassi�ers in general outperforms the simple naive Bayesian lassi�er, and alsoahieves better average results than bagging and boosting with naive Bayesianlassi�ers. In our urrent work, the hierarhial arhiteture had to be designeda-priori. In future work we want to study growing arhitetures online usingross-validation to test the appropriateness of an arhiteture. In this way wewant to irumvent using arhitetures whih an under�t or over�t the learn-ing data and thus perform poorly on the test data. Finally, we want to ombinevariants of the HME arhiteture with other algorithms suh as deision trees,K-nearest neighbors, loally weighted regression, and support vetor mahines.ReferenesBauer, E. and Kohavi, R. (1999). An empirial omparision of voting lassi-�ation algorithms: Bagging, boosting, and variants. Mahine Learning,36:105 { 142.Breiman, L. (1996). Bagging preditors. Mahine Learning, 24(2):123{140.Breiman, L. (1998). Aring lassiers. The annals of statistis, 26:801{849.Chow, C. and Liu, C. (1968). Approximating disrete probability distributionswith dependene trees. IEEE Transations on Information Theory, IT-14,3:462{467.Dagum, P. and Luby, M. (1993). Approximating probabilisti inferene inbayesian belief networks is NP{hard. Arti�ial Intelligene, 60:141{153.7Note that the hierarhial mixtures of NBCs still works if partiular features values areunknown. In general NBCs are quite robust against missing values, whih are usually just notused in the lassi�ation and learning proess.
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