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tNaive Bayesian 
lassi�ers tend to perform very well on a large numberof problem domains, although their representation power is quite limited
ompared to more sophisti
ated ma
hine learning algorithms. In this pa-per we study 
ombining multiple naive Bayesian 
lassi�ers by using thehierar
hi
al mixtures of experts system. This system, whi
h we 
all hi-erar
hi
al mixtures of naive Bayesian 
lassi�ers, is 
ompared to a simplenaive Bayesian 
lassi�er and to using bagging and boosting for 
ombiningmultiple 
lassi�ers. Results on 19 data sets from the UCI repository in-di
ate that the hierar
hi
al mixtures ar
hite
ture in general outperformsthe other methods.Keywords: Naive Bayesian Classi�ers, Hierar
hi
al Mixtures of Experts,Bagging, Boosting, Ma
hine Learning.1 Introdu
tionDespite their simpleness, naive Bayesian 
lassi�ers (Duda and Hart, 1973) ingeneral obtain highly 
ompetitive results 
ompared to de
ision trees (Quinlan,1993), neural networks trained with ba
kpropagation (Rumelhart et al., 1986),instan
e-based learning algorithms, and other indu
tive learning algorithms,see (Domingos and Pazzani, 1997) for a 
omparison study. Re
ently there isa lot of interest from the automati
 text 
ategorization 
ommunity to use thenaive Bayesian 
lassi�er be
ause of its advantages of learning speed, simpleness,memory usage, in
rementality, and good results (M
Callum et al., 1998). Thenaive Bayesian 
lassi�er (NBC) works well on a wide range of problems, and isoptimal when attributes are independent given the 
lass. However, in real datasets, the independen
y assumption is often violated, but Domingos and Pazzani(1997) show that even if that is 
learly the 
ase, the naive Bayesian 
lassi�ermay still be optimal under the zero-one loss fun
tion. E.g. NBCs 
an optimallylearn data sets des
ribed by 
onjun
tions or disjun
tions of literals, althoughthese domains violate the independen
y assumption. However, the simple NBClearns a linear dis
riminant fun
tion and is therefore unable to learn linearly1



inseparable data su
h as the ex
lusive OR problem. Some approa
hes to over-
ome this problem 
ombine attributes (Pazzani, 1996), but when there aremany attributes, the algorithm needs to be exe
uted many times, resulting inslow learning in 
ase multiple attributes need to be 
ombined. Furthermore,
ombining too many attributes results in large representations and worse gen-eralization performan
e. Instead, we opt for an algorithm whi
h 
an deal withnon-linearly separable data in a more prin
ipled way.Hierar
hi
al models. To solve the ex
lusive OR problem, we 
an usehierar
hi
al ar
hite
tures, just like linear networks have led to multi-layer per-
eptrons. Our 
urrent work is similar to the hierar
hi
al mixtures of experts(HME) algorithm (Ja
obs et al., 1991; Jordan and Ja
obs, 1992). The HMEar
hite
ture 
an 
onsist of linear networks and is still able to learn non-linearfun
tions. Instead of using linear networks as models, we use naive Bayesian
lassi�ers. Thus, we have an ar
hite
ture 
onsisting of gating NBCs whi
hpartition the data and weight the expert NBCs predi
ting the 
lass probabili-ties. This results in a mu
h more powerful 
lassi�er whi
h is able to deal withnon-linearly separable data.Combining models. There exist a number of general algorithms whi
halso learn multiple models (
lassi�ers) and 
ombine them to produ
e the �nalresult. One method is sta
ked generalization (Wolpert, 1992) whi
h 
ombinesindu
ed models from the bottom layer to the top-layer, where independentmodel errors are used to sele
t models for predi
ting the answer to a query.Sta
ked generalization 
an be seen as a meta-theory for 
ombining models,but it is not entirely 
lear how it 
an be used for 
ombining NBCs. Anotheralgorithm is bagging (Breiman, 1996) whi
h learns a set of independent modelsby �rst bootstrapping the data to get a training set and then indu
ing a newNBC on this data set. This is then repeated a number of times. The models arethen 
ombined by using majority voting of the predi
ted 
lasses. This method
an improve generalization performan
e, but does not lead to more powerfulrepresentations. Another method whi
h re
eives a lot of attention is boosting(Freund and S
hapire, 1996; S
hapire et al., 1997) whi
h sequentially indu
esa set of models where the data is reweighted after indu
ing ea
h new 
lassi�er.This is done so that mis
lassi�ed examples get higher weight in the trainingdata for the next 
lassi�er. By 
ombining multiple 
lassi�ers through voting,individual errors are 
orre
ted by the other 
lassi�ers. Some experiments (Bauerand Kohavi, 1999) have shown boosting to work better than bagging with NBCs(and also with de
ision trees) on a variety of data sets and to improve NBC
lassi�
ation a

ura
y substantially on a number of data sets from the UCIrepository (Merz et al., 1997). A problem with these methods, however, isthat the single NBCs still have to be able to learn the training data, whi
hthey 
annot in 
ase of the ex
lusive OR problem. Although boosting theorypredi
ts that the training data 
an be perfe
tly loaded, it 
annot perfe
tly loadall data sets with NBCs (Bauer and Kohavi, 1999). Therefore, the additionalrepresentation power when using the hierar
hi
al mixtures of NBCs 
an bebene�
ial for parti
ular data sets.Contents. In se
tion 2, we des
ribe naive Bayesian 
lassi�ers (NBCs). Inse
tion 3, we des
ribe hierar
hi
al mixtures of NBCs. In se
tion 4, we 
ompare2



the single NBC to bagging, boosting and using the novel hierar
hi
al mixturesof NBCs on 19 supervised data sets from the UCI repository. In se
tion 5, wedis
uss related work. Finally, se
tion 6 
on
ludes this paper.2 Naive Bayesian Classi�ersNaive Bayesian 
lassi�ers make an independen
y assumption to make full Bayesianlearning feasible. A representation in whi
h full dependen
y is modelled be-tween the attributes would require an exponential amount of spa
e to store andan exponential amount of time and data to learn. Other statisti
al learningalgorithms use a set of independen
y relations to 
onstru
t a 
ompa
t Bayesiannetwork (He
kerman et al., 1995), although exa
t inferen
e is still an NP-hardproblem (Dagum and Luby, 1993). Naive Bayesian 
lassi�ers make a full in-dependen
y statement and this makes them very fast to train and 
ompa
t tostore. This means that storing a large number of examples with many featuresbe
omes an easy task with su
h methods. Although the full independen
y as-sumption makes the model less powerful, NBCs still tend to perform very wellon real world data sets. Domingos and Pazzani (1997) analyse why this is the
ase, and their �ndings are that although the bias (
omponent of the error foran in�nite sample) of NBCs is larger than the bias of more powerful learningalgorithms, the varian
e (
omponent of the error due to the sample's �nite size)of NBCs is smaller. Sin
e the varian
e de
reases with a growing number of ex-amples, NBCs may outperform other algorithms when the data sets are quitesmall. Furthermore, sin
e the dis
riminant power of NBCs in
reases with agrowing number of attributes, the NBC should be parti
ularly favoured whenthe sample size is small and the number of attributes is large. These are alsoexa
tly the kind of problems for whi
h more powerful indu
tive learners tendto over�t the data resulting in poor generalization performan
e.2.1 Naive Bayesian Classi�ersThe learning problem is to map a set of features D = ff1; f2; : : : ; fng de-s
ribing an instan
e to its 
orre
t 
lass-label C. For this the learning al-gorithm �rst indu
es a model (
lassi�er) by learning on the training data(D1; C1); (D2; C2); : : : ; (DT ; CT ).Statisti
al learning algorithms perform the 
lassi�
ation by �rst 
omputing
lass probabilities P (Cjf1; f2; : : : ; fn) of all output 
lasses C given the inputfeatures, and then sele
ting the 
lass with maximal probability. We 
annot storethese probabilities dire
tly 1, sin
e this would require an exponential amountof storage spa
e and the result would not be useful for generalization. Instead,we �rst use Bayes' rule to 
ompute:P (Cjf1; f2; : : : ; fn) = P (f1; f2; : : : ; fnjC)P (C)P (f1; f2; : : : ; fn)1This would resemble root learning. 3



and to de
rease the size of this model we use the naive Bayes hypotheses ofmutual independen
y among the features given the 
lass:P (f1; f2; : : : ; fnjC) = �i P (fijC)Now we have P (Cjf1; f2; : : : ; fn) = �P (C) �i P (fijC)where � is a normalization 
onstant to sum all 
lass probabilities given the fea-tures to 1.0. Basi
ally the naive Bayesian 
lassi�er 
an also be seen as a produ
tnetwork, where the bias is the 
lass probability and weighted inputs are nowmodelled as features probabilities whi
h are determined by a tabular represen-tation. Thus, for nominal features the simple naive Bayesian 
lassi�er 
an learna linear de
ision boundary2, and therefore has the same representational poweras a per
eptron.2.2 Learning AlgorithmThe learning algorithm is simple and uses a set of 
ounters3 to store all infor-mation. We de�ne:P (C) = 
(C)tot ; and Pi(fijC) = 
i(fi; C)
(C)To deal with the problem of having unobserved (feature-value, 
lass) pairs inthe training data, we use some parametrized Lapla
e 
orre
tion. For this, weinitialize the 
ounters to some small value 
, and sum over them to get thetotals. Now on ea
h learning example (ff1; f2; : : : ; fng; C�), we use the followingalgorithm to update the parameters:Updating NBC(ff1; f2; : : : ; fng; C�; weight):1) 
(C�) += weight2) tot += weight3) For all k = 1 : : : n3a) 
k(fk; C�) += weightHere the weight will be useful for de�ning the forth
oming algorithms. For thesingle naive Bayesian 
lassi�er we use a weight of 1.0. Note that the algorithmis just using frequen
y 
ounting, and a small prior (
) is used to initialize themodel.3 Hierar
hi
al Mixtures of Naive Bayesian Classi-�ersThe hierar
hi
al mixtures of experts system of Jordan and Ja
obs (1992) 
on-sists of a number of gating networks and expert networks. The gating networks2For numeri
 attributes de
ision boundaries 
ould be non-linear due to the dis
retizationmethod used.3The 
ounter variables 
(C) et
. are represented as real numbers.4



learn to gate the predi
tions of experts to the top layer network whi
h makesthe �nal predi
tion. The expert networks will spe
ialize on a parti
ular sub-spa
e of the full input spa
e, whereas the gating networks learn whi
h expertperforms best on a given example. We use the same system, but now we usenaive Bayesian 
lassi�ers (NBCs) instead of linear neural networks as gatingand expert models.3.1 Ar
hite
tureWe will explain a 2-layer ar
hite
ture. Extensions to higher layer ar
hite
turesare trivial. The system 
onsists of 1 root gating NBC m0, N gating NBCs m11to mN1 , and N �M expert networks m112 to mNM2 . Have a look at �gure 1whi
h depi
ts a two-layer ar
hite
ture in whi
h the gating networks have twosub-models (
hildren).
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Figure 1: The 2-layer ar
hite
ture 
onsisting of naive Bayesian 
lassi�ers. Thegating NBCs weight the outputs of their sub-models and propagate the weightedsum to the gating network one layer above. Expert NBCs estimate the 
lassprobabilities �ij given the features.Expert NBCs mij2 output 
lass probabilities given the input features des
ribingthe instan
e D. The 
lass probabilities 
an be modelled as a ve
tor ~�ij =(�C1ij ; �C2ij ; : : : ; �CKij ), where:�Cij = P ij2 (CjD) = �P ij2 (C)�kP ij2 (fkjC)Here � is again a renormalization 
onstant. The top-layer gating NBC m0
omputes the following gating values for its sub-models Mi:gi = P0(MijD) = �P0(Mi)�kP0(fkjMi)and gating NBCs mi1 
ompute output gating values by:gjji = P i1(Mj jD) = �P i1(Mj)�kP i1(fkjMj)5



So the gating NBCs essentially treat their submodels as 
lasses; they try to
lassify an instan
e as the best performing sub-model.Our ar
hite
ture now 
onsists of 
ounters for all models. For model mij2 weuse totij2 et
. as 
ounter variables. The 
omplete model should be initializedwith some symmetry breaking 
ounter generator (e.g. by adding a small randomvalue to the initialization value 
).We want to 
ompute the 
lass probabilities of the root network given theinput data D = ff1; f2; : : : ; fNg. For this we have to 
ompute 
lass probabilitiesby propagating the predi
tions of the experts to the top. The output of the
omplete ar
hite
ture 
an be 
omputed as:~� =Xi giXj gjji ~�ijFor training this system, the gating networks have to predi
t how well theirsub-models perform given some input data, and let the gating weight of thebest model 
onverge to the highest value among the models.3.2 Learning by Expe
tation MaximizationExpe
tation Maximization (Dempster et al., 1977) is a well known method formultiple model �tting in whi
h mixture 
oeÆ
ients of the lo
al mixture modelsare learned. The weights for sele
ting ea
h model are latent variables, sin
ethey 
annot be estimated dire
tly from the data. Instead a 
ouple of iterations
an be performed in whi
h the latent variables 
an be estimated by monitoringthe error of individual models. The total probability of generating the output
lass probabilities is 
omputed by mixing the expert 
lass probabilities throughthe gating networks given the parameters:P0(CjD) =Xi giXj gjjiP ij2 (CjD)Posterior probabilities. To develop the learning algorithm, we need to
ompute posterior probabilities that ea
h model has generated the right output
lass C�. For this we 
ompute:hi = giPj gjjiP̂ ij2 (C�jD)Pi giPj gjjiP̂ ij2 (C�jD)and hjji = gjjiP̂ ij2 (C�jD)Pj gjji ^P ij2 (C�jD)where we use a Gaussian regression model for 
omputing the probability thatexpert network mij2 generated C�:P̂ ij2 (C�jD) = e��(1:0�P ij2 (C�jD))We 
ould also have used other distributions su
h as the Bernoulli distribution,but sele
ted the Gaussian regression model due to its general appli
ability to6



multiple 
lasses. Furthermore, using this model gives us more in
uen
e to
ontrol the learning speed in whi
h models start to deviate from ea
h other. Forthis we 
an set � whi
h in our experiments was set to a small value (0.1) so thatone model would not immediately learn mu
h faster on data of a parti
ular 
lass(for whi
h the lo
al model may have learned a higher a-priori 
lass probability).We �rst 
ompute the posterior values (Expe
tation step), and then we up-date the gating models so that the best model will get a higher weight on theexample, and we update the 
lass probabilities of experts to the real 
lass a
-
ording to their posterior probabilities (Maximization step). We will not usegradient des
ent learning here, sin
e we expe
t it to learn slow due to theprodu
t networks (the gradient would be 
omputed by multiplying all P (fijC)values, some of whi
h may be very small). Instead we use the naive Bayesian
lassi�er update s
heme. Note that we perform the EM step after ea
h exam-ple, thus we have an online sto
hasti
 learning algorithm. Also, sin
e we usethe naive Bayesian 
lassi�er, the algorithm does not really maximize the prob-ability of generating the 
orre
t 
lass label, but rather makes a small step toin
rease this probability. The algorithm is therefore a generalized EM or GEMalgorithm (Jordan and Ja
obs, 1992).Updating the expert models. After having 
omputed the 
lass proba-bilities for ea
h model and having 
omputed the posterior probabilities for allmodels (ex
ept the root model), we 
an adapt the models.We update the expert networks using the NBC updating s
heme. Hereexpert network mij2 has parametersP ij2 (C) = 
ij2 (C)totij2 ; and P ij2k(fkjC) = 
ij2k(fk; C)
ij2 (C)We update the 
ounter variables given an example X = (D;C�) by using theNBC updating s
heme. To do this we 
all Update-NBC(D;C�; hihjji) forea
h modelmij2 . Thus, the weight of the update equals the posterior probabilitythat the expert network 
ould have generated the 
orre
t 
lass. Updating inthis way, 
auses expert networks with the largest posterior probability (hihjji)to learn the example fastest and to bias its fun
tion more to this example. Allexpert networks learn on ea
h example.Updating the gating models. For updating the gating networks, wemake use of the best predi
tive sub-model as the desired output of the 
lassi-�er, so that the update 
auses this model to be sele
ted with a higher prob-ability. The best sub-model Mb has the largest probability of generating C�.For the top-layer model we update the model parameters by 
alling: Update-NBC(D;Mb; 1:0). Thus, the best sub-model is now the 
orre
t 
lass, and theweight of updating towards this model on this example is 1.For the sub-gating networks, we multiply the learning weight of 1.0 by theposteriori probability hi to obtain the learning weight. We again 
ompute thebest sub-model of ea
h sub-gating network, and 
all this Mb. Then we updatethe parameters of model mi1 by 
alling: Update-NBC(D;Mb; hi).Solving the ex
lusive OR problem. Before running experiments on realworld data sets, we �rst analysed whether the hierar
hi
al mixtures of NBCs was7



able to learn the ex
lusive OR problem and the 4-bit parity problem. Learningthe ex
lusive OR problem was no problem at all for a one layer ar
hite
ture |it was always able to load the training patterns. For learning the 4-bit parityproblem, we had to use higher layer ar
hite
tures. The smallest ar
hite
turewhi
h 
an represent the 4-bit parity problem is a 4-layer ar
hite
ture in whi
hthere are always two submodels for ea
h gating network. However, this minimalmodel 
ould not learn the 4-bit parity problem with the parameters we used.Then we tried 6 and 7-layer ar
hite
tures, and these were able to reliably learnthe 4-bit parity problem. Thus, these experiments showed that the hierar
hi
almixtures of NBCs is able to learn non-linearly separable data sets.4 ExperimentsWe have tested the hierar
hi
al mixtures of naive Bayesian 
lassi�ers on 19 datasets from the UCI repository. We prepro
essed 
ontinuous (and nominal datawith large values) by using the mean and standard devian
e and 
omputing sig-ni�
an
e 
lasses using 1 standard deviation as a separator between two featurevalues.4 The data sets are given below in table 1.Experimental setup. We 
ompare the hierar
hi
al mixtures of naiveBayesian 
lassi�ers (HM) to the simple naive Bayesian 
lassi�er, bagging andboosting. For the HM ar
hite
tures, we used a single layer ar
hite
ture 
onsist-ing of 4 expert networks, and a 2-layer ar
hite
ture 
onsisting of 2 � 2 expertnetworks. We performed experiments with bagging and boosting in whi
h thenumber of models was 10. We did not explore whether using more models (e.g.50) worked better for two reasons: (1) The hierar
hi
al systems would be mu
hsmaller and therefore faster to use, (2) We also did not use results of largerhierar
hi
al ar
hite
tures whi
h may sometimes have worked better. Finally,we expe
t the sign of signi�
ant di�eren
es between the methods to remain thesame in 
ase a mu
h larger number of models would have been used.Our algorithms for bagging and boosting were similar to the ones des
ribedin (Bauer and Kohavi, 1999), but di�ered in some aspe
ts. For bagging, wedid not always bootstrap a new data set whi
h was equal in size to the originaldata set. We rather experimented with using per
entages of the original dataset, and found that sometimes bagging worked best when only 20% was usedfor ea
h data set. Most often, however, we used about 90% of the original dataset size for bootstrapping (with repla
ement).For boosting, Bauer and Kohavi (1999) used bootstrapping on the originaldata set in 
ase the error of a 
lassi�er was larger than 50%. Instead, wereweighted the original data set with values between 0.9 and 1.1, and usedthe new reweighted data set for learning the next 
lassi�er. Thus instead ofresampling we used reweighting, whi
h should not di�er a lot.We performed 50 simulations per data set in whi
h always half of the data4Comparing our results to published results of possibly better approa
hes for dis
retizingthe features su
h as entropy-based dis
retization, shows that there is usually only a slightde
rease in learning performan
e. See also the 
omparison study in (Domingos and Pazzani,1997). This will not a�e
t our 
urrent 
omparison study, however.8



Data Set Nr. of Classes Nr. of Features Nr. of Instan
esAbalone 14 9 4177W. Breast Can
er 2 9 699Car 4 6 1728Chess kr-vs-kp 2 36 3196Contra
eptive 3 9 1473E
oli 8 7 336Glass 8 9 214Hepatitis 2 19 155Housing 5 13 506Ionosphere 2 34 351Iris 3 4 151Liver Bupa 2 6 345Pima Indians 2 8 768Segmentation 7 19 210Servo 5 4 167Soybeans 20 35 675Spam 2 57 4601Vote 2 16 435Yeast 10 8 1484Table 1: The nineteen data sets from the UCI repository.set was used for learning and the other half was used for testing. We used 5 EMiterations for ea
h hierar
hi
al system, in whi
h during 1 iteration the 
ompletetraining data was learned in an online fashion. We kept all learning parameters
onstant for all data sets: 
 = 0:1 + rand(0; 0:01), � = 0:1.Test results. Table 2 shows the test results on the 19 data sets. The tableindi
ates the per
entages of 
orre
t 
lassi�
ations with the standard devian
e,and signi�
an
e of the results. Here (++) indi
ates a signi�
ant improvement(t-test, p < 0:01) and (+) a signi�
ant improvement (p < 0.05) 
ompared to thesimple NBC. The win-loss row indi
ates how often the mixtures of NBC, baggingor boosting signi�
antly (p < 0:05) work better or worse than the simple naiveBayesian 
lassi�er. The average error redu
tion (Bauer and Kohavi, 1999) is
omputed by �rst 
omputing the error redu
tion (ea�eb)ea , where ea is the errorof the simple NBC, for ea
h data set and then 
omputing the average.The results show that the hierar
hi
al mixtures of NBCs signi�
antly out-perform the simple NBC on 8 data sets and loose on 2 data sets. Furthermore,they in
rease the average a

ura
y with more than 1%, and redu
e the aver-age error with about 7%. Although the di�eren
es may seem quite small, theyare signi�
ant, and for some data sets the simple NBC already seems to rea
hthe highest possible test performan
e5, so that it is diÆ
ult to improve on this.5In other 
omparison studies with other learning algorithms, there also seems to be thesame maximal a

ura
y for these parti
ular data sets.9



Data Set NBC 1-4 HM 2-2 HM Bagging BoostingAbalone 68.6�1.2 71:8 � 1:3++ 71:7 � 1:0++ 68:9 � 1:2= 68:5 � 1:5=Breast Can
er 97.2�0.6 97:0 � 0:7= 96:6 � 0:8�� 97:3 � 0:7= 95:8 � 0:9��Car 84.8�1.6 89:4 � 1:2++ 88:3 � 1:6++ 83:3 � 1:6�� 89:9 � 1:2++Chess 87.1�1.1 91:6 � 1:8++ 92:7 � 1:7++ 87:2 � 1:5= 94:5 � 0:8++Contra
eptive 51.4�1.2 51:8 � 1:4= 51:5 � 1:5= 50:9 � 1:6= 51:0 � 1:5=E
oli 73.8�2.8 73:1 � 3:8= 73:5 � 3:5= 73:8 � 3:2= 73:3 � 3:2=Glass 48.5�5.1 51:0 � 5:3+ 51:9 � 5:2++ 50:9 � 4:9+ 51:0 � 5:7+Hepatitis 85.5�2.8 83:2 � 3:6�� 82:8 � 3:5�� 84:4 � 3:2= 82:2 � 3:6��Housing 59.3�2.3 63:5 � 3:8++ 67:7 � 2:5++ 61:4 � 3:5++ 59:7 � 2:7=Ionosphere 90.0�1.8 91:3 � 1:4++ 91:0 � 2:2+ 90:1 � 1:5= 90:2 � 2:3=Iris 90.2�3.5 90:1 � 2:9= 90:1 � 3:5= 89:2 � 2:6= 90:0 � 2:4=Liver Bupa 60.0�3.0 60:8 � 3:0= 60:3 � 3:1= 58:4 � 2:9�� 60:5 � 3:1=Pima Indians 75.0�1.4 74:2 � 2:3� 75:0 � 1:6= 75:2 � 2:0= 73:3 � 2:1��Segmentation 78.7�4.0 79:3 � 5:6= 79:7 � 6:4= 78:6 � 4:8= 77:8 � 5:4=Servo 82.3�4.2 83:0 � 3:8= 82:1 � 3:3= 80:2 � 4:9� 82:6 � 3:7=Soybeans 89.5�2.2 91:6 � 2:4++ 91:5 � 2:6++ 90:1 � 1:9= 91:3 � 1:9++Spam 90.9�0.4 91:0 � 0:5= 91:1 � 0:1= 90:6 � 0:5= 90:2 � 0:7��Vote 90.6�1.7 92:7 � 1:7++ 93:3 � 2:3++ 90:4 � 1:5= 94:1 � 1:5++Yeast 56.6�1.1 57:1 � 1:4= 57:0 � 1:3= 56:2 � 1:5= 56:5 � 1:5=Average : 76.8 78.1 78.3 76.7 77.5Av. error red. - 6.7 6.6 -1.5 3.2Sign. Win-loss : - 8 : 2 8 : 2 3 : 3 5 : 4Table 2: The Training results on the 19 data sets.However, for parti
ular data sets the improvements are quite large and for someof these data sets we found that larger HM ar
hite
tures even worked better.When we examine bagging, we 
an see that it sometimes works better thanthe NBC, but as many times works worse (espe
ially for data sets with fewfeatures), so there is no real improvement in 
ombining bagging with NBCs ingeneral. This 
an be expe
ted, sin
e NBCs are quite stable 
lassi�ers, so that
ombining multiple 
lassi�ers is not so e�e
tive, and 
an sometimes even redu
elearning performan
e sin
e less data of the original data set may be e�e
tivelyused for learning ea
h 
lassi�er.Boosting outperforms the NBC signi�
antly in a number of domains su
has Car, Chess, and Vote6, but on many other data sets does not lead to an im-provement. In some domains, boosting even results in a larger error. We havefound that this is 
aused by 2 problems: (1) Boosting sometimes leads to over-�tting the data, where the training data is perfe
tly loaded, but generalizationperforman
e is redu
ed (whi
h happened for e.g. Breast Can
er and Hepati-tis), (2) Boosting has problems with some domains su
h as Spam, be
ause afterindu
ing 1 
lassi�er, the next one always has a weighted error sum larger than50% on the reweighted data. Therefore, boosting on su
h data sets does not6A 
omparison with other published results shows that de
ision trees often outperformNBCs in these domains. 10



lead to a 
ollaboration between voting 
lassi�ers, but stand-alone 
lassi�ers arelearned.If we look at the domains in whi
h boosting outperforms the simple NBC, weobserve that the hierar
hi
al mixtures systems also outperform the simple NBC.This is remarkable and is probably 
aused by the fa
t that for these domains asmaller error on the training data also means a smaller error on the test data.Sin
e boosting and the hierar
hi
al mixtures always redu
e the training error
ompared to the simple NBC, their generalization performan
e depends on thea
tual domain (and the limited training data we used). Boosting improvesthe average a

ura
y, but performs on average less well than the hierar
hi
almixtures systems.We also experimented with boosting hierar
hi
al mixtures of NBCs. Al-though, for some domains this worked very well, the average a

ura
y for alldata sets was the same as for the hierar
hi
al mixtures of NBCs alone. Fi-nally, we also tried to learn the gating values after a number of expert networkswere learned by boosting. Sin
e boosting weights ea
h indu
ed 
lassi�er bytheir average error, this does not indi
ate for what kind of data the 
lassi�erworks well. Learning to weight these 
lassi�ers for ea
h example might thereforebe useful. The preliminary experiments indi
ated that using the hierar
hi
almixtures of NBCs after learning ea
h 
lassi�er by boosting, did not result inimproved average performan
e 
ompared to boosting, however.5 Related WorkThere have been a number of approa
hes to extend the naive Bayesian 
lassi�eror to 
ombine models. Domingos (2000) used Bayesian model averaging, where�rst a set of 
lassi�ers are indu
ed, and then weights for 
ombining the modelsare estimated by 
omputing the error probability of ea
h 
lassi�er. This methoddoes not use di�erent weights for di�erent examples, however. The experimentsshowed that this often led to over�tting the data.Bauer and Kohavi (1999) used the NBC and 
ombined it with bagging,boosting and some variants su
h as ar
ing (Breiman, 1998). They showed thatbagging NBCs 
ould slightly improve the results on the data sets they used, andthat boosting NBCs signi�
antly redu
ed the test error. Our experiments showmu
h less advantage for using bagging and boosting, but this may be 
ausedby the fa
t that Bauer and Kohavi used di�erent data sets with mu
h moreexamples (all data sets they used had at least 1000 examples). Furthermore,naive Bayesian 
lassi�ers are stable learning algorithms, and that is why we
annot expe
t a great bene�t from using bagging. We also found that boostingsometimes leads to over�tting the data, where the algorithm 
ould perfe
tlyload the training data, but an in
rease in test error o

urred.Kohavi (1996) studies using de
ision trees with naive Bayesian 
lassi�ersat the leave nodes (NBTree). The experiments showed that the 
ombinationworked better than either algorithm alone. Ting and Zheng (1999) also 
om-bined de
ision tree learning with naive Bayesian 
lassi�ers at the leave nodes,but found that indu
ing trees with more than one node, worked less well than11



the simple NBC alone. Then they applied boosting to the NBC and to NBTree,and found that boosting NBCs did not result in any improvement of the aver-age a

ura
y over all data sets they used. Boosting NBTree worked very well,however, and signi�
antly outperformed the simple NBC. They explain theseresults by the fa
t that NBTree in
reases instability (the bias is smaller and thevarian
e is larger) so that boosting may result in better performan
e. It wouldbe interesting to 
ompare the boosted NBTree to the hierar
hi
al mixtures ofNBCs des
ribed in this paper, or to 
ombine both algorithms.Zheng (1998) uses a 
ommittee of naive Bayesian 
lassi�ers in whi
h ea
hdi�erent NBC has a di�erent subset of attributes. His method sele
ts attributesso that attributes used by one 
lassi�er whi
h performs well on the data set arealso used with higher probability by the next 
lassi�er. The results show thatthe 
ommittee 
an signi�
antly outperform the simple NBC on parti
ular datasets from the UCI repository. These 
ommittees 
annot learn to 
lassify non-separable data sets, however.Zheng, Webb and Ting (1999) developed lazy Bayesian rules, a 
lassi�ersystem whi
h evaluates test examples in a lazy way. Instead of building ageneral 
lassi�er on the training data, the training data is stored in memory,and if an example needs to be 
lassi�ed a new 
lassi�er is 
onstru
ted. Thisis done by using a 
onjun
tive rule on attribute values. Di�erent 
onjun
tiverules are 
onstru
ted and from the training data whi
h obey the rule, a naiveBayesian 
lassi�er in 
onstru
ted. To 
hoose among the possible 
onjun
tiverules, N-fold 
ross validation is used. The lazy Bayesian rules system is shownto outperform the simple NBC and performs on average as well as boostingde
ision trees. Sin
e for ea
h test example, a new 
lassi�er should be indu
ed,the method uses more 
omputation time, however, than boosting 100 de
isiontrees in 
ase many test examples need to be 
lassi�ed.M
Callum et al. (1998) use a hierar
hi
al model of NBCs for text 
lassi�-
ation problems. The hierar
hy whi
h was used 
ame from the used internetprovider (e.g. Yahoo), and a form of expe
tation maximization was used to�t a set of mixture 
oeÆ
ients to sele
t sub-models responsible for generat-ing a do
ument. Furthermore, they used shrinkage as a statisti
al te
hniqueto deal with expert NBCs whi
h re
eive only few examples. The experimentson three real-world data sets showed improved performan
e 
ompared to thesimple naive Bayesian 
lassi�er.Stewart (1998) developed an algorithm whi
h in
ludes hidden variables tothe naive Bayesian 
lassi�er. The latent variables are learned by a maximumlikelihood algorithm, but he does not use hidden variables to sele
t or 
ombinemodels. Instead, the hidden variables are used to approximate the joint distri-bution of a set of variables. This method outperforms the simple NBC on somedata sets from the UCI repository.Meila and Jordan (2000) des
ribe an algorithm whi
h learns mixture 
oef-�
ients for 
ombining a set of tree distributions. Tree distributions (Chow andLiu, 1968) are spe
ial 
ases of graphi
al models in whi
h both parameter andstru
ture learning are tra
table. The mixture-of-trees model provides an e�e
-tive generalization of tree distributions in whi
h di�erent dependen
ies betweenthe variables 
an be modelled by di�erent trees. Like graphi
al models, this12



method 
an be used for density estimation and 
lassi�
ation, but due to itswider appli
ability, the mixture 
oeÆ
ients were not 
onditioned on the inputof an example, whi
h may 
ontain many unknown values.7 The experimentsshow that the algorithm outperforms a large number of other algorithms su
has the hierar
hi
al mixtures of experts and the simple NBC.6 Con
lusionWe introdu
ed the hierar
hi
al mixtures of naive Bayesian 
lassi�ers whi
h isbased on the hierar
hi
al mixtures of experts system where all networks arenaive Bayesian 
lassi�ers. We have shown that the hierar
hi
al extension 
anlearn to 
lassify non linearly separable data, whi
h a simple naive Bayesian 
las-si�er 
annot. In the experiments we 
ompared the novel hierar
hi
al system tothe 
at naive Bayesian 
lassier and two other te
hniques for 
ombining multiple
lassi�ers | bagging and boosting. The experimental results on 19 data setsfrom the UCI repository show that the hierar
hi
al mixtures of naive Bayesian
lassi�ers in general outperforms the simple naive Bayesian 
lassi�er, and alsoa
hieves better average results than bagging and boosting with naive Bayesian
lassi�ers. In our 
urrent work, the hierar
hi
al ar
hite
ture had to be designeda-priori. In future work we want to study growing ar
hite
tures online using
ross-validation to test the appropriateness of an ar
hite
ture. In this way wewant to 
ir
umvent using ar
hite
tures whi
h 
an under�t or over�t the learn-ing data and thus perform poorly on the test data. Finally, we want to 
ombinevariants of the HME ar
hite
ture with other algorithms su
h as de
ision trees,K-nearest neighbors, lo
ally weighted regression, and support ve
tor ma
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