
Hierarchical Mixtures of Naive Bayesian

Classifiers

Marco A. Wiering

Intelligent Systems Group
Institute of Information and Computing Sciences

Utrecht University
Padualaan 14, 3508TB Utrecht, The Netherlands

marco@cs.uu.nl

Abstract. Naive Bayesian classifiers tend to perform very well on a
large number of problem domains, although their representation power
is quite limited compared to more sophisticated machine learning algo-
rithms. In this paper we study combining multiple naive Bayesian clas-
sifiers by using the hierarchical mixtures of experts system. This novel
system, which we call hierarchical mixtures of naive Bayesian classifiers,
is compared to a simple naive Bayesian classifier and to using bagging
and boosting for combining multiple classifiers. Results on 19 data sets
from the UCI repository indicate that the hierarchical mixtures archi-
tecture in general outperforms the other methods.

1 Introduction

Despite their simplicity, naive Bayesian classifiers [9] in general obtain highly
competitive results compared to decision trees, neural networks trained with
backpropagation, instance-based learning algorithms, and other inductive learn-
ing algorithms, see [8] for a comparison study. The naive Bayesian classifier
(NBC) works well on a wide range of problems with discrete and nominal data,1

and is optimal when attributes are independent given the class. However, in real
data sets, the independency assumption is often violated. Furthermore, the sim-
ple NBC learns a linear discriminant function and is therefore unable to learn
linearly inseparable data such as the exclusive OR problem. Some approaches
to overcome this problem combine attributes [16], but when there are many
attributes, the algorithm needs to be executed many times, resulting in slow
learning in case multiple attributes need to be combined. Furthermore, combin-
ing too many attributes results in large representations and worse generalization
performance. Instead, we opt for an algorithm which can deal with non-linearly
separable data in a more principled way.

1 For continuous attributes, the data can be preprocessed which often leads to better
results.

Hierarchical models. To solve the exclusive OR problem, we can use hi-
erarchical architectures, just like linear networks have led to multi-layer percep-
trons. Our current work is similar to the hierarchical mixtures of experts (HME)
algorithm [11]. The HME architecture can consist of linear networks and is still
able to learn non-linear functions.2 Instead of using linear neural networks as
models, we use naive Bayesian classifiers. Thus, we have an architecture con-
sisting of gating NBCs which partition the data and weight the expert NBCs
predicting the class probabilities. E.g., in text categorization one gating NBC
could learn to discriminate between newsgroups such as politics and religion and
an expert NBC could then discriminate between politics-guns and politics-misc
etc. Thus the hierarchical mixtures of NBCs results in a much more powerful
classifier which is able to deal with non-linearly separable data.

Combining models. There exist a number of general algorithms which also
learn multiple models (classifiers) and combine them to produce the final result.
One algorithm is bagging [4] which learns a set of independent models by first
bootstrapping the data to get a separate training set and then inducing a new
NBC on this data set. This is then repeated a number of times. The models are
then combined by using majority voting of the predicted classes. Another method
which receives a lot of attention is boosting [10, 17] which sequentially induces a
set of models where the data is reweighted after inducing each new classifier. This
is done so that misclassified examples get higher weight in the training data for
the next classifier. By combining multiple classifiers through voting, individual
errors are corrected by the other classifiers. A problem with these methods,
however, is that the single NBCs still have to be able to learn the training
data, which they cannot in case of the exclusive OR problem. Therefore, the
additional representation power when using the hierarchical mixtures of NBCs
can be beneficial for particular data sets.

Contents. In section 2, we describe naive Bayesian classifiers (NBCs). In
section 3, we describe hierarchical mixtures of NBCs. In section 4, we compare
the single NBC to bagging, boosting and using the novel hierarchical mixtures
of NBCs on 19 supervised data sets from the UCI repository. Section 5 describes
related work. Finally, section 6 concludes this paper.

2 Naive Bayesian Classifiers

Naive Bayesian classifiers make an independency assumption to make full Bayesian
learning feasible. A representation in which full dependency is modelled between
the attributes would require an exponential amount of space to store and an ex-
ponential amount of time and data to learn. Other statistical learning algorithms
use a set of independency relations to construct a compact Bayesian network al-
though exact inference is still a NP-hard problem for the most general Bayesian
networks. NBCs make a full independency statement which makes them very
fast to train and compact to store.

2 The HME method can also be combined with nonlinear classifiers (see e.g., [2]).

2.1 Naive Bayesian Classifiers

The learning problem is to map a set of features D = {f1, f2, . . . , fn} describing
an instance to its correct class-label C. For this the learning algorithm first in-
duces a classifier by learning on the training data (D1, C1), (D2, C2), . . . , (DT , CT).

Statistical learning algorithms perform the classification by first computing
class probabilities P (C|f1, f2, . . . , fn) of all output classes C given the input
features, and then selecting the class with maximal probability. We cannot store
these probabilities directly, since it would require an exponential amount of
storage space and the result would not be useful for generalization. Instead, we
first use Bayes’ rule to compute:

P (C|f1, f2, . . . , fn) =
P (f1, f2, . . . , fn|C)P (C)

P (f1, f2, . . . , fn)

and to decrease the size of this model we use the naive Bayes hypotheses of
mutual independency among the features given the class, and get:

P (C|f1, f2, . . . , fn) = αP (C) Πi P (fi|C)

α is a normalization constant to sum all class probabilities given the features to
1.

2.2 Learning Algorithm

The learning algorithm is simple and uses a set of counters3 to store all infor-
mation:

P (C) =
c(C)

tot
; and Pi(fi|C) =

ci(fi, C)

c(C)

Here tot counts the total number of examples in the training data, and c(C)
counts the number of examples belonging to class C. The value ci(fi, C) denotes
the number of examples belonging to class C which have fi as the value of the ith

attribute. To deal with the problem of having unobserved (feature-value, class)
pairs in the training data, we use some parametrized Laplace correction. For
this, we initialize the counters to some small value γ, and sum over them to
get the totals. Now on each learning example ({f1, f2, . . . , fn}, C

∗), we use the
following algorithm to update the parameters:

Updating NBC({f1, f2, . . . , fn}, C
∗, weight):

1) c(C∗) += weight

2) tot += weight

3) For all k = 1 . . . n

3a) ck(fk, C∗) += weight

Here the weight will be useful for defining the forthcoming algorithms. The
+ = operator refers to assignment plus addition. For the single naive Bayesian
classifier we use a weight of 1.0. Note that the algorithm is just using frequency
counting, and a small prior (γ) is used to initialize the model.

3 The counter variables c(C) etc. are represented as real numbers.

3 Mixtures of Naive Bayesian Classifiers

The hierarchical mixtures of experts system of Jordan and Jacobs (1992) consists
of a number of gating neural networks and expert neural networks. The gating
networks learn to gate the predictions of experts to the top layer network which
makes the final prediction. The expert networks will specialize on a particular
subspace of the full input space, whereas the gating networks learn which expert
performs best on a given example. We use a similar system, but now we use naive
Bayesian classifiers (NBCs) instead of linear neural networks as gating and expert
models. Also for training the gating and expert networks we devised different
update algorithms. Like the original HME architecture, the learned hierarchy of
NBCs can mirror the hierarchical structure of the classification scheme.

3.1 Architecture

We will explain a 2-layer hierarchical mixtures of naive Bayesian classifiers archi-
tecture. Extensions to higher layer architectures are trivial. The system consists
of 1 root gating NBC m0, N first-layer gating NBCs m1

1 to mN
1 , and N × M

expert NBCs m11
2 to mNM

2 . Have a look at figure 1 which depicts a two-layer
architecture in which the gating models have two sub-models (so here N and M

are both 2).

Σ Σ

Σ

Input features

µ µ µ µ

µ µ

11 12 21
22

1
2g

g g

g

2

g1

g1|1

2|1

1|2

2|2

µ

Class probabilities

m

m m m m

m

m

2

1
1

11
2

12
2
21 22

2

2

1

0

Fig. 1. The 2-layer architecture consisting of naive Bayesian classifiers. The gating
NBCs (m1

1 and m2

1) weight the outputs of their sub-models (by values g) and propagate
the weighted sum to the gating NBC one layer above. Expert NBCs estimate the class
probabilities µij given the features.

Expert NBCs m
ij
2 output class probabilities given the input features describing

the instance D. The class probabilities given by expert m
ij
2 can be modelled as

a vector µij = (µC1

ij , µC2

ij , . . . , µCL

ij), where:

µC
ij = P

ij
2 (C|D) = αP

ij
2 (C)ΠkP

ij
2 (fk|C)

Here α is again a renormalization constant. P
ij
2 (C|D) denotes the probability

expert m
ij
2 assigns to class C given the data-item D. The top-layer gating NBC

m0 computes the following gating values for its sub-models Mi:

gi = P0(Mi|D) = αP0(Mi)ΠkP0(fk|Mi)

The gating values can be seen as probabilities that each submodel gives a correct
answer. These are then used to weight the answers of the submodels and to
propagate the weighted sum to one higher level.

Gating NBCs mi
1 compute output gating values by:

gj|i = P i
1(Mij |D) = αP i

1(Mij)ΠkP i
1(fk|Mij)

So the gating NBCs essentially treat their submodels as classes; they try to
classify an instance as the best performing sub-model. Here in this case the
Mij refer to the expert networks m2

ij . Given an example described by a set of
features, the gating NBCs tell which of its submodels is likely to give the best
class-prediction. In this way the best expert is used more for classifying that
example. Of course, the goal of the whole system is to learn for what kind of
examples which of the submodels perform best; this will be done by expectation
maximization as described later.

Our architecture consists of counters for all models. For model m
ij
2 we use

tot
ij
2 etc. as counter variables. The complete model should be initialized with

some symmetry breaking counter generator (e.g. by adding a small random value
to the initialization value γ). This is needed so that the gating networks and all
experts are not completely homogeneous so that the experts will be able to
specialize on different parts of the input space. We want to compute the class
probabilities of the root model given the input data D = {f1, f2, . . . , fN}. For
this we have to compute class probabilities by propagating the predictions of the
experts to the top. The output of the complete architecture is:

µ =
∑

i

gi

∑

j

gj|iµij

P0(C|D) =
∑

i

P i
0(Mi|D)

∑

j

P i
1(Mij |D)P ij

2 (C|D)

Thus, µC = P0(C|D). For training this system, the gating models have to
predict how well their sub-models perform given some input data, and let the
gating weight of the best model given an example converge to the highest value
among the models.

3.2 Learning by Expectation Maximization

Expectation Maximization [6] is a well known method for multiple model fit-
ting in which mixture coefficients of the local mixture models are learned. The
weights for selecting each model are latent variables, since they cannot be esti-
mated directly from the data. Instead a couple of iterations can be performed in
which the latent variables can be estimated by monitoring the error of individual
models.

Posterior probabilities. To develop the learning algorithm, we need to
compute posterior probabilities that each model generated the correct output
class C∗:

hi =
gi

∑
j gj|i

ˆ
P

ij
2 (C∗|D)

∑
i gi

∑
j gj|i

ˆ
P

ij
2 (C∗|D)

and

hj|i =
gj|i

ˆ
P

ij
2 (C∗|D)

∑
j gj|i

ˆ
P

ij
2 (C∗|D)

where we use a Gaussian regression model for computing the probability that
expert m

ij
2 generated the correct class label C∗:

ˆ
P

ij
2 (C∗|D) = e−σ(1.0−P

ij

2
(C∗|D))

We could also have used other distributions such as the Bernoulli distribution,
but selected the Gaussian regression model due to its general applicability to
multiple classes. Furthermore, using this model gives us more influence to control
the learning speed in which models start to deviate from each other.

We first compute the posterior values (Expectation step), and then we update
the gating models so that the best model will get a higher weight on the example,
and we update the class probabilities of experts to the real class with a learning
rate according to their posterior probabilities (Maximization step). Note that
we perform the EM step after each example, thus we have an online stochastic
learning algorithm. Also, since we use a NBC, the algorithm does not really
maximize the probability of generating the correct class, but rather makes a
small step to increase this probability. The algorithm is thus a generalized EM
(GEM) algorithm [11].

Updating the expert models. After having computed the class proba-
bilities for each model and having computed the posterior probabilities for all
models (except the root model), we can adapt the models. We update the counter
variables of expert NBCs m

ij
2 given an example X = (D, C∗) by using the NBC

updating scheme. To do this we call Update-NBC(D, C∗, hihj|i) for each NBC

m
ij
2 . Thus, the weight of the update equals the posterior probability that the

expert NBC could have generated the correct class. Updating in this way, causes
expert NBCs with the largest posterior probability (hihj|i) to learn the example

fastest and to bias its function more to this example. All expert NBCs learn on
each example.

Updating the gating models. For updating the gating NBCs, we make
use of the best predictive sub-model as the desired output of the classifier, so
that the update causes this model to be selected with a higher probability. The
best sub-model Mb has the largest probability of generating C∗. For the top-layer
model we update the model parameters by calling: Update-NBC(D, Mb, 1.0).
Thus, the best sub-model is now the correct output (class), and the weight of
updating towards this best model on this example is 1.

For the sub-gating NBCs, we multiply the learning weight of 1.0 by the
posteriori probability hi to obtain the learning weight. We again compute the
best sub-model of each sub-gating NBC mi

1, and call this Mib. Then we update
the parameters of model mi

1 by calling: Update-NBC(D, Mib, hi).
Solving the exclusive OR problem. Before running experiments on real

world data sets, we first did some experiments to verify whether the hierarchical
mixtures of NBCs was able to learn the exclusive OR problem. Learning the
exclusive OR problem was no problem at all for a one layer architecture (i.e. it
has one gating NBC and two expert NBCs) — it was always able to learn to
correctly classify the four training patterns. Thus, the hierarchical system can
learn to classify non linearly separable data.

4 Experiments

We have tested the hierarchical mixtures of NBCs on 19 data sets from the UCI
repository. We preprocessed continuous (and nominal data with large values) by
using the mean and standard deviation and computing significance classes using
1 standard deviation as a separator between two feature values.

Experimental setup. We compared the hierarchical mixtures of naive Bayesian
classifiers (HM) to the simple naive Bayesian classifier, bagging and boosting.
For the HM architectures, we used a single layer architecture consisting of 4
expert NBCs (which we call 1-4 HM), and a 2-layer architecture consisting of 2
× 2 expert NBCs (like the one shown in figure 1). We did not try to optimize
the architecture or learning parameters for the different datasets. We performed
experiments with bagging and boosting in which the number of models was 10.
We performed 50 simulations per data set in which always half of the data set
was used for learning and the other half was used for testing. We used 5 EM
iterations for each hierarchical system, in which during 1 iteration the complete
training data was learned in an online fashion. We kept all learning parameters
constant: γ = 0.1 + rand(0, 0.01), σ = 0.1.

Test results. Table 1 shows the test results on the 19 data sets. The table
indicates the percentages of correct classifications with the standard deviance,
and significance of the results. Here (++, +) indicates a significant improvement
(p < 0.01, p < 0.05) compared to the simple NBC. The win-loss row indicates
how often the mixtures of NBCs, bagging or boosting significantly (p < 0.05)
work better or worse than the simple naive Bayesian classifier. The average error

Table 1. The Training results on the 19 data sets.

Data Set NBC 1-4 HM 2-2 HM Bagging Boosting

Abalone 68.6±1.2 71.8 ± 1.3++ 71.7 ± 1.0++ 68.9 ± 1.2= 68.5 ± 1.5=

Breast Cancer 97.2±0.6 97.0 ± 0.7= 96.6 ± 0.8−− 97.3 ± 0.7= 95.8 ± 0.9−−

Car 84.8±1.6 89.4 ± 1.2++ 88.3 ± 1.6++ 83.3 ± 1.6−− 89.9 ± 1.2++

Chess 87.1±1.1 91.6 ± 1.8++ 92.7 ± 1.7++ 87.2 ± 1.5= 94.5 ± 0.8++

Contraceptive 51.4±1.2 51.8 ± 1.4= 51.5 ± 1.5= 50.9 ± 1.6= 51.0 ± 1.5=

Ecoli 73.8±2.8 73.1 ± 3.8= 73.5 ± 3.5= 73.8 ± 3.2= 73.3 ± 3.2=

Glass 48.5±5.1 51.0 ± 5.3+ 51.9 ± 5.2++ 50.9 ± 4.9+ 51.0 ± 5.7+

Hepatitis 85.5±2.8 83.2 ± 3.6−− 82.8 ± 3.5−− 84.4 ± 3.2= 82.2 ± 3.6−−

Housing 59.3±2.3 63.5 ± 3.8++ 67.7 ± 2.5++ 61.4 ± 3.5++ 59.7 ± 2.7=

Ionosphere 90.0±1.8 91.3 ± 1.4++ 91.0 ± 2.2+ 90.1 ± 1.5= 90.2 ± 2.3=

Iris 90.2±3.5 90.1 ± 2.9= 90.1 ± 3.5= 89.2 ± 2.6= 90.0 ± 2.4=

Liver Bupa 60.0±3.0 60.8 ± 3.0= 60.3 ± 3.1= 58.4 ± 2.9−− 60.5 ± 3.1=

Pima Indians 75.0±1.4 74.2 ± 2.3− 75.0 ± 1.6= 75.2 ± 2.0= 73.3 ± 2.1−−

Segmentation 78.7±4.0 79.3 ± 5.6= 79.7 ± 6.4= 78.6 ± 4.8= 77.8 ± 5.4=

Servo 82.3±4.2 83.0 ± 3.8= 82.1 ± 3.3= 80.2 ± 4.9− 82.6 ± 3.7=

Soybeans 89.5±2.2 91.6 ± 2.4++ 91.5 ± 2.6++ 90.1 ± 1.9= 91.3 ± 1.9++

Spam 90.9±0.4 91.0 ± 0.5= 91.1 ± 0.1= 90.6 ± 0.5= 90.2 ± 0.7−−

Vote 90.6±1.7 92.7 ± 1.7++ 93.3 ± 2.3++ 90.4 ± 1.5= 94.1 ± 1.5++

Yeast 56.6±1.1 57.1 ± 1.4= 57.0 ± 1.3= 56.2 ± 1.5= 56.5 ± 1.5=

Average : 76.8 78.1 78.3 76.7 77.5

Av. error red. - 6.7 6.6 -1.5 3.2

Sign. Win-loss : - 8 : 2 8 : 2 3 : 3 5 : 4

reduction [1] is computed by first computing the error reduction (ea−eb)
ea

, where
ea is the error of the simple NBC, for each data set and then computing the
average.

The results show that the hierarchical mixtures of NBCs significantly out-
perform the simple NBC on 8 data sets and loses on 2 data sets. Furthermore,
they increase the average accuracy with more than 1%, and reduce the average
error with about 7%. Although the differences may seem quite small, they are
significant, and for some data sets the simple NBC already seems to reach the
highest possible test performance4, so that it is difficult to improve on this. We
can see that this for example holds for the medical diagnosis data sets (Breast
Cancer, Ecoli, Hepatitis, Liver Bupa, Pima Indians) where the mutual inde-
pendency assumption is not (or hardly) violated, since the disease causes the
symptoms directly. However, for particular data sets the improvements are quite
large and for some of these data sets we found that larger HM architectures even
worked better.

When we examine bagging, we can see that it sometimes works better than
the NBC, but as many times works worse (especially for data sets with few
features), so there is no real improvement in combining bagging with NBCs in
general.

Boosting outperforms the NBC significantly in a number of domains such as
Car, Chess, and Vote, but on many other data sets does not lead to an improve-

4 In other comparison studies with other learning algorithms, there also seems to be
the same maximal accuracy for these particular data sets.

ment. In some domains, boosting results in a larger error. Boosting improves the
average accuracy, but performs on average less well than the hierarchical system.

We also experimented with boosting hierarchical mixtures of NBCs. Al-
though, for some domains this worked very well, the average accuracy for all
data sets was the same as for the hierarchical mixtures of NBCs alone. Finally,
we also tried to learn the gating values after a number of expert networks were
learned by boosting. Since boosting weights each induced classifier by their av-
erage error, this does not indicate for what kind of data the classifier works well.
Learning to weight these classifiers for each example might therefore be use-
ful. The preliminary experiments indicated that using the hierarchical mixtures
of NBCs after learning each classifier by boosting, did not result in improved
average performance compared to boosting NBCs, however.

5 Related Work

There have been a number of approaches to extend the naive Bayesian classifier
or to combine models. Domingos (2000) used Bayesian model averaging, where
first a set of classifiers are induced, and then weights for combining the models
are estimated by computing the error probability of each classifier. This method
does not use different weights for different examples, however. The experiments
showed that this often led to overfitting the data.

Bauer and Kohavi (1999) used the NBC and combined it with bagging, boost-
ing and some variants such as arcing [3]. They showed that bagging NBCs could
slightly improve the results on the data sets they used, and that boosting NBCs
significantly reduced the test error. Our experiments show much less advantage
for using bagging and boosting, but this may be caused by the fact that Bauer
and Kohavi used different data sets with much more examples (all data sets
they used had at least 1000 examples). Furthermore, naive Bayesian classifiers
are stable learning algorithms, and that is why we cannot expect a great benefit
from using bagging. We also found that boosting sometimes leads to overfitting
the data, where the algorithm could perfectly load the training data, but an
increase in test error occurred.

Kohavi (1996) studies using decision trees with naive Bayesian classifiers
at the leave nodes (NBTree). The experiments showed that the combination
worked better than either algorithm alone. Ting and Zheng (1999) also combined
decision tree learning with naive Bayesian classifiers at the leave nodes, but found
that inducing trees with more than one node, worked less well than the simple
NBC alone. Then they applied boosting to the NBC and to NBTree, and found
that boosting NBCs did not result in any improvement of the average accuracy
over all data sets they used. Boosting NBTree worked very well, however, and
significantly outperformed the simple NBC. They explain these results by the
fact that NBTree increases instability (the bias is smaller and the variance is
larger) so that boosting may result in better performance. It would be interesting
to compare the boosted NBTree to the hierarchical mixtures of NBCs described
in this paper, or to combine both algorithms.

Zheng (1998) uses a committee of naive Bayesian classifiers in which each
different NBC has a different subset of attributes. His method selects attributes
so that attributes used by one classifier which performs well on the data set
are also used with higher probability by the next classifier. The results show
that the committee can significantly outperform the simple NBC on particular
data sets from the UCI repository. These committees cannot learn to classify
non-separable data sets, however.

Zheng, Webb and Ting (1999) developed lazy Bayesian rules, a classifier
system which evaluates test examples in a lazy way. Instead of building a general
classifier on the training data, the training data is stored in memory, and if
an example needs to be classified a new classifier is constructed. This is done
by using a conjunctive rule on attribute values. Different conjunctive rules are
constructed and from the training data which obey the rule, a naive Bayesian
classifier in constructed. To choose among the possible conjunctive rules, N-fold
cross validation is used. The lazy Bayesian rules system is shown to outperform
the simple NBC and performs on average as well as boosting decision trees. Since
for each test example, a new classifier should be induced, the method uses more
computation time, however, than boosting 100 decision trees in case many test
examples need to be classified.

McCallum et al. (1998) use a hierarchical model of NBCs for text classifi-
cation problems. The hierarchy which was used came from the used internet
provider (e.g. Yahoo), and a form of expectation maximization was used to fit
a set of mixture coefficients to select sub-models responsible for generating a
document. Furthermore, they used shrinkage as a statistical technique to deal
with expert NBCs which receive only few examples. The experiments on three
real-world data sets showed improved performance compared to the simple naive
Bayesian classifier.

Stewart (1998) developed an algorithm which includes hidden variables to
the naive Bayesian classifier. The latent variables are learned by a maximum
likelihood algorithm, but he does not use hidden variables to select or combine
models. Instead, the hidden variables are used to approximate the joint distri-
bution of a set of variables. This method outperforms the simple NBC on some
data sets from the UCI repository.

Meila and Jordan (2000) describe an algorithm which learns mixture coeffi-
cients for combining a set of tree distributions. Tree distributions [5] are special
cases of graphical models in which both parameter and structure learning are
tractable. The mixture-of-trees model provides an effective generalization of tree
distributions in which different dependencies between the variables can be mod-
elled by different trees. Like graphical models, this method can be used for den-
sity estimation and classification, but due to its wider applicability, the mixture
coefficients were not conditioned on the input of an example, which may contain
many unknown values. The experiments show that the algorithm outperforms
a large number of other algorithms such as the hierarchical mixtures of experts
and the simple NBC.

Monti and Cooper (1999) describe a Bayesian network classifier that com-
bines a finite mixture model and a naive Bayes model. The finite mixture model
is a model which uses a hidden variable which is used as the cause for both
the features and the classification. In this case, the classification is not directly
treated as the cause for the inputs as in normal naive Bayes classifiers. The de-
scribed novel combination allows the hidden variable and the classification to
cause the input features. This combination is still a (normal) Bayesian network,
however, since it does not allow to compute a weighted sum of the classification
probabilities returned by the expert NBCs where the weights are given by gating
NBCs.

6 Conclusion

We introduced the hierarchical mixtures of naive Bayesian classifiers which is
based on the hierarchical mixtures of experts system. All gating and expert
models are naive Bayesian classifiers, and the classical naive Bayes updating
scheme is extended for training the hierarchical system. We have shown that the
hierarchical extension can learn to classify non linearly separable data, which
a simple naive Bayesian classifier cannot. In the experiments we compared the
novel hierarchical system to the flat naive Bayesian classifier and two other
techniques for combining multiple classifiers — bagging and boosting. The ex-
perimental results on 19 data sets from the UCI repository show that the hier-
archical mixtures of naive Bayesian classifiers in general outperforms the other
tested learning methods. In our current work, the hierarchical architecture had
to be designed a-priori. In future work we want to study growing architectures
online using cross-validation to test the appropriateness of an architecture. In
this way we want to circumvent using architectures which can underfit or overfit
the learning data and thus perform poorly on the test data. Finally, we want to
study combining variants of the HME architecture with other algorithms such
as support vector machines.

References

1. E. Bauer and R. Kohavi. An empirical comparison of voting classification algo-
rithms: Bagging, boosting, and variants. Machine Learning, 36:105 – 142, 1999.

2. C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon-Press, Oxford,
1995.

3. L. Breiman. Arcing classifiers. The annals of statistics, 26:801–849, 1998.

4. Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
5. C.K. Chow and C.N. Liu. Approximating discrete probability distributions with

dependence trees. IEEE Transactions on Information Theory, IT-14, 3:462–467,
1968.

6. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series ”B”,
39:1–38, 1977.

7. P. Domingos. Bayesian averaging of classifiers and the overfitting problem. In
P. Langley, editor, Proceedings of the Seventeenth International Conference on Ma-
chine Learning, pages 223–230. San Francisco, CA: Morgan Kaufmann, 2000.

8. Pedro Domingos and Michael J. Pazzani. On the optimality of the simple Bayesian
classifier under zero-one loss. Machine Learning, 29(2-3):103–130, 1997.

9. R.O. Duda and P.E. Hart. Pattern classification and scene analysis. New York:
John Wiley and Sons, 1973.

10. Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm.
In Proceedings of the thirteenth International Conference on Machine Learning,
pages 148–156. Morgan Kaufmann, 1996.

11. M. I. Jordan and R. A. Jacobs. Hierarchies of adaptive experts. In J. E. Moody, S. J.
Hanson, and R. P. Lippmann, editors, Advances in Neural Information Processing
Systems 4, pages 985–993. Morgan Kauffmann, 1992.

12. Ron Kohavi. Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree
hybrid. In Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining, pages 202–207, 1996.

13. A. McCallum, R. Rosenfeld, Tom Mitchell, and A. Ng. Improving text classification
by shrinkage in a hierarchy of classes. In Proceedings of the 1998 International
Conference on Machine Learning, July 1998.

14. M. Meila and M.I. Jordan. Learning with mixtures of trees. Journal of Machine
Learning Research, 1:1–48, 2000.

15. S. Monti and G. F. Cooper. A Bayesian network classifier that combines a finite
mixture model and a naive Bayes model. In Proceedings of the 15th Conference on
Uncertainty in Artificial Intelligence (UAI-99), pages 447–456, 1999.

16. M. Pazzani. Searching for dependencies in Bayesian classifiers. In D. Fisher and
H.J. Lenz, editors, Learning from data: Artificial intelligence and statistics V, pages
239–248, 1996.

17. Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the
margin: a new explanation for the effectiveness of voting methods. In Proceedings
of the fourteenth International Conference on Machine Learning, pages 322–330.
Morgan Kaufmann, 1997.

18. B. Stewart. Improving performance of naive Bayes classifiers by including hid-
den variables. In J. Mira and A.P. Del Pobil, editors, Methodology and Tools in
Knowledge-Based Systems, 11th International Conference on Industrial and En-
gineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE-98,
Volume I. Lecture Notes in Computer Science, Vol. 1415., pages 272–280. Springer,
1998.

19. Kai Ming Ting and Zijian Zheng. Improving the performance of boosting for naive
Bayesian classification. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pages 296–305, 1999.

20. Zijian Zheng. Naive Bayesian classifier committees. In Proceedings of the tenth Eu-
ropean Conference on Machine Learning, pages 196–207. Berlin: Springer-Verlag,
1998.

21. Zijian Zheng, Geoffrey I. Webb, and Kai Ming Ting. Lazy Bayesian rules: a lazy
semi-naive Bayesian learning technique competitive to boosting decision trees. In
Proc. 16th International Conf. on Machine Learning, pages 493–502. Morgan Kauf-
mann, San Francisco, CA, 1999.

