
Two Novel On-policy Reinforcement Learning
Algorithms based on TD(λ)-methods

Marco A. Wiering and Hado van Hasselt
Intelligent Systems Group

Department of Information and Computing Sciences, Utrecht University
Padualaan 14, 3508TB Utrecht, The Netherlands

Tel: +31 30 2539209, Fax: +31 30 2513791, Email: {marco,hado}@cs.uu.nl

Abstract— This paper describes two novel on-policy reinforce-
ment learning algorithms, named QV(λ)-learning and the actor
critic learning automaton (ACLA). Both algorithms learn a state
value-function using TD(λ)-methods. The difference between the
algorithms is that QV-learning uses the learned value function
and a form of Q-learning to learn Q-values, whereas ACLA uses
the value function and a learning automaton-like update rule to
update the actor. We describe several possible advantages of these
methods compared to other value-function-based reinforcement
learning algorithms such as Q-learning, Sarsa, and conventional
Actor-Critic methods. Experiments are performed on (1) small,
(2) large, (3) partially observable, and (4) dynamic maze problems
with tabular and neural network value-function representations,
and on the mountain car problem. The overall results show
that the two novel algorithms can outperform previously known
reinforcement learning algorithms.

I. INTRODUCTION

Reinforcement learning algorithms [11], [3] are very suit-
able for learning to control an agent by letting it interact
with an environment. Currently, there are three well-known
model-free value-function-based reinforcement learning (RL)
algorithms that use the discounted future reward criterium;
Q-learning [12], Sarsa [6], [10], and Actor-Critic methods
[1], [11], [4]. Alternatively, a number of policy search and
policy gradient algorithms have been proposed, but we will
not describe these here. This paper introduces two new value-
function-based RL algorithms, named QV-learning and the
actor critic learning automaton (ACLA). Similar to Actor-
Critic methods and in contrast to Q-learning and Sarsa,
QV-learning and ACLA keep track of two functions.1 Both
algorithms learn the state value-function (V-function) with
temporal difference (TD) learning [9], and use this estimated
state value-function to learn a policy. QV-learning learns
the state-action (Q) values using a form of Q-learning, and
ACLA uses a learning automaton-like update rule [5] to learn
preference values of actions. The new algorithms are also
enhanced by eligibility traces [9] by learning the values of the
state value-function using TD(λ) methods. In the experiments,
we compare QV(λ)-learning and ACLA(λ) to Q(λ)-learning,
a conventional Actor-Critic method, and Sarsa(λ). We will not
compare the new algorithms to model-based algorithms, since

1Note that Q-learning and Sarsa only learn state-action values, the value
of a state can be derived from the different state-action values of actions
applicable in that state.

these cannot directly work with continuous input spaces and
non-linear function approximators such as neural networks.
Furthermore, we will also not do experiments with batch
algorithms that can decrease the number of experiences at the
expense of more computation time per experience, although
it is straightforward to extend the new algorithms to their
batch versions. In the experiments, we first use a small maze
and compare the algorithms using tabular and neural network
representations. Then, we use a larger maze and compare
the algorithms using tabular representations. We also perform
experiments with a partially observable maze and a dynamic
maze. We conclude the experiments with the mountain car
problem.

Outline. Section II describes previous reinforcement learn-
ing algorithms. Section III describes the new reinforcement
learning algorithms. Then, Section IV describes the results
of a number of experiments with tabular and neural network
representations. Section V discusses the obtained results, and
Section VI concludes this paper.

II. REINFORCEMENT LEARNING

Reinforcement learning algorithms are able to let an agent
learn from its experiences generated by its interaction with
an environment. We assume an underlying Markov decision
process (MDP) which does not have to be known by the
agent. A finite MDP is defined as; (1) The state-space S =
{s1, s2, . . . , sn}, where st ∈ S denotes the state of the system
at time t; (2) A set of actions available to the agent in each
state A(s), where at ∈ A(st) denotes the action executed
by the agent at time t; (3) A transition function T (s, a, s′)
mapping state-action pairs s, a to a probability distribution
over successor states s′; (4) A reward function R(s, a, s′)
which denotes the average reward obtained when the agent
makes a transition from state s to state s′ using action a,
where rt denotes the (possibly stochastic) reward obtained at
time t; (5) A discount factor 0 ≤ γ < 1 that values later
rewards less compared to immediate rewards.

A. Value-functions and Dynamic Programming
In optimal control or reinforcement learning (RL), we are

interested in computing or learning the optimal policy for
mapping states to actions. The optimal policy is defined as the
policy that receives the highest possible cumulative discounted

rewards in its future from all states. In order to learn the
optimal policy, value-function-based RL [11] estimates value-
functions using past experiences of the agent. The value of
a state V π(s) is the expected cumulative discounted future
reward when the agent starts in state s and follows policy π:

V π(s) = E(

∞∑

i=0

γiri|s0 = s, π)

An optimal policy π∗ is a policy that has the largest state-
value in all states: ∀π ∀s V π∗

(s) ≥ V π(s). In many cases
reinforcement learning algorithms used for learning to control
an agent also use a Q-function for evaluating state-action
pairs. Here Qπ(s, a) is defined as the expected cumulative
discounted future reward if the agent is in state s, executes
action a, and follows policy π afterwards:

Qπ(s, a) = E(
∞∑

i=0

γiri|s0 = s, a0 = a, π)

If the optimal Q-function Q∗ is known, the agent can select
optimal actions by selecting the action with the largest value in
a state: π∗(s) = arg maxa Q∗(s, a). Furthermore the optimal
value of a state corresponds to the highest action value in
that state according to the optimal Q-function: V ∗(s) =
maxa Q∗(s, a). There exists a recursive equation known as
the Bellman optimality equation [2] that relates a state-action
value of the optimal value-function to other optimal state-
values that can be reached from that state using a single
transition:

Q∗(s, a) =
∑

s′

T (s, a, s′)(R(s, a, s′) + γV ∗(s′))

This equation has led to several dynamic programming (DP)
methods for solving known MDPs [2]. One of the most used
DP algorithms is value iteration that uses the Bellman equation
as an update:

Qk+1(s, a) :=
∑

s′

T (s, a, s′)(R(s, a, s′) + γV k(s′))

Where V k(s) = maxa Qk(s, a). In each step the Q-function
looks ahead one step using this recursive update rule. It can be
shown that limk→∞ Qk = Q∗, when starting from an arbitrary
Q0 containing only finite values.

B. Reinforcement Learning Algorithms
Although dynamic programming algorithms can be effi-

ciently used for computing optimal solutions for particular
MDPs, they have problems for more practical applicability;
(1) The MDP should be known a-priori; (2) For large state-
spaces the computational time would become very large;
(3) They cannot be directly used for continuous state-action
spaces. Reinforcement learning algorithms can cope with these
problems: the MDP does not need to be known a-priori, all
that is required is that the agent can interact with an environ-
ment. Furthermore, for large or continuous state-spaces, RL
algorithms can be combined with function approximators for
learning the value-functions. Then, the agent does not have

to visit all states, but can generalize from experiences and
concentrate on parts of the state-space where learned policies
lead into.

Q-learning. A famous algorithm for learning a Q-function
is Q-learning [12], [13]. Q-learning makes an update after an
experience (st, at, rt, st+1) as follows:

Q(st, at) := Q(st, at)+α(rt +γ max
a

Q(st+1, a)−Q(st, at))

Where 0 ≤ α ≤ 1 is the learning rate. Q-learning is an off-
policy reinforcement learning algorithm [11], which means
that the agent learns about the optimal value-function while
following another behavioral policy that includes exploration
steps. This has as advantage that it does not matter how
much exploration is used, as long as the agent visits all state-
action pairs an infinite number of times, tabular Q-learning
(with appropriate learning rate adaptation) will converge to the
optimal Q-function [13]. A disadvantage of Q-learning is that
it can diverge when combined with function approximators.
Another possible disadvantage is that off-policy algorithms do
not modify the behavior of the agent to better deal with the
exploration/exploitation dilemma [8].

Sarsa. Instead of Q-learning, we can also use the on-policy
algorithm Sarsa [6], [10] for learning Q-values. Sarsa makes
the following update after an experience (st, at, rt, st+1, at+1):

Q(st, at) := Q(st, at) + α(rt + γQ(st+1, at+1) − Q(st, at))

Tabular Sarsa converges in the limit to the optimal policy under
proper learning rate annealing if the exploration policy is GLIE
(greedy in the limit with infinite exploration), which means
that the agent should always explore, but stop exploring after
an infinite number of steps [8].

Actor-Critic. Another on-policy algorithm is the Actor-
Critic (AC) method. In contrary to Q-learning and Sarsa, AC
methods keep track of two functions; a Critic that evaluates
states and an Actor that maps states to a preference value
for each action. A number of Actor-Critic methods have been
proposed [1], [4], [11]. Here we will use the Actor-Critic
method described in [11]. After an experience (st, at, rt, st+1)
AC makes a TD-update to the Critic’s value-function V :

V (st) := V (st) + β(rt + γV (st+1) − V (st))

where β is the learning rate. AC updates the Actor with values
P (st, at) as follows:

P (st, at) := P (st, at) + α(rt + γV (st+1) − V (st))

where α is the learning rate for the Actor. The P-values
should be seen as preference values and not as exact Q-values.
Consider a bandit problem with one state and two actions.
Both actions lead to an immediate deterministic reward of 1.
When one action is selected a number of times in a row or
the initial learning rate is 1, the state or V-value and the P-
value for this action converge rapidly to 1. Afterwards the
P-value of the other action can never increase anymore using
AC and will not converge to the underlying Q-value of 1.
A number of Actor-Critic methods have still been proved to

converge to the optimal policy and state value-function for
tabular representations [4].

III. QV(λ)-LEARNING AND ACLA(λ)
We will now describe the two new on-policy reinforcement

learning algorithms. QV(λ)-learning works by keeping track
of both the Q- and V-functions. In QV-learning the state value-
function V is learned with TD(λ)-methods [9]. This is similar
to Actor-Critic methods. The new idea is that the Q-values
simply learn from the V-values using the one-step Q-learning
algorithm. In contrary to AC these learned values can be seen
as actual Q-values and not as preference values.

QV-learning. The updates after an experience
(st, at, rt, st+1) of QV-learning are the following:

V (st) := V (st) + β(rt + γV (st+1) − V (st))

and

Q(st, at) := Q(st, at) + α(rt + γV (st+1) − Q(st, at))

Note that the V-value used in this second update rule is learned
by QV-learning and not defined in terms of Q-values. There is
a strong resemblance with the Actor-Critic method; the only
difference is the second learning rule where V (st) is replaced
by Q(st, at) in QV-learning.

QV(λ)-learning. The updates after an experience
(st, at, rt, st+1) of QV(λ)-learning are the following:

∀s : V (s) := V (s) + βδtlt(s)

Where the eligibility traces lt(s) for all states are updated by:

lt(s) := γλlt−1(s) + ηt(s)

where ηt(s) is the indicator function which returns 1 if state s

occurred at time t (s = st), and 0 otherwise, and δt is defined
as:

δt = rt + γV (st+1) − V (st)

Furthermore, the Q-values are updated again with a form of
the Q-learning rule:

Q(st, at) := Q(st, at) + α(rt + γV (st+1) − Q(st, at))

QV-learning is an on-policy algorithm, since the value-
function is learned by TD-learning that uses experiences
generated by the behavioural policy that includes exploration
steps.

Actor Critic Learning Automaton. ACLA learns a state
value-function in the same way as QV-learning, but ACLA
uses a learning automaton-like update rule [5] for changing
the policy mapping states to probabilities (or preferences) for
actions. The updates after an experience (st, at, rt, st+1) of
ACLA are the following:

V (st) := V (st) + β(rt + γV (st+1) − V (st))

and, now we use an update rule that examines whether the last
performed action was good (in which case the state-value was
increased) or not. We do this with the following update rule:

If δt ≥ 0 ∆P (st, at) = α(1 − P (st, at)) and
∀a 6= at ∆P (st, a) = α(0 − P (st, a))

Else ∆P (st, at) = α(0 − P (st, at)) and
∀a 6= at ∆P (st, a) = α(P (st,a)

P

b6=at
P (st,b) − P (st, a))

After which we add ∆P (st, a) to P (st, a). For ACLA we used
some additional rules to ensure the targets are always between
0 and 1, independent of the initialization. This is done by using
1 if the target is larger than 1, and 0 if the target is smaller
than 0. If the denominator ≤ 0, all targets in the last part of
the update rule get the value 1

|A|−1 where |A| is the number of
actions. The update in case of δt < 0 is chosen to increase the
preference of actions which are good more than actions that
are considered worse. Above is the ACLA− algorithm, we
also extended ACLA− to ACLA+ which can make multiple
updates relying on the size of δt = γV (st+1) + rt − V (st).
This algorithm keeps track of the whole state space’s variance
using the following update rule:

var = var + µ(δ2
t − var)

with µ a step-size parameter set to 0.001 and var is initialized
to 10 in our experiments. The variance var is used to compute
the number of times the ACLA-update above is made. This
number of times equals: d |δt|√

var
e. Note that only ACLA+

makes use of this multiple updating technique, ACLA− does
not. We simply use ACLA to denote both algorithms. ACLA
is similar to a conventional actor-critic system in which the
update using δt is replaced by an update rule using the sign
of δt. ACLA trains the actor to output a 1 for the best action
and a zero for worse actions, which leads to a different training
algorithm of the mapping between states and actions than the
usual state-action value-function. This can also make it easier
to take into account supervised examples of states and their
optimal actions. For ACLA(λ), the algorithm stays the same
except that the state values are learned using TD(λ).

Although ACLA can perform very well on particular prob-
lems, we remark that for particular highly stochastic environ-
ments, ACLA can converge to a suboptimal final policy. The
reason is that essentially ACLA uses the sign of δt to make an
update, instead of δt itself as conventional actor-critic methods.
We have analysed that the only function on δt that can be
used is in fact a linear function for converging in stochastic
environments to an optimal policy. We will show this with
an example. Suppose that there is a single state s and two
actions. Action a1 receives a reward of +100 with probability
10% and a reward of -10 with probability 90%. Action a2

receives a reward of -100 with probability 10% and a reward
of +10 with probability 90%. Thus, the values of action a1

and a2 are +1 and -1 respectively. Since the value of the
state will be between -1 and 1 after some learning, action
a1 will have the sign of δt positive in 10% of the cases and
negative in 90% of the cases. The opposite holds for action
a2. Therefore, action a2 will be reinforced more often and
will be finally chosen by the policy. Note that this example

uses a very strange probability distribution which may happen
rarely in RL problems. If there is stochasticity, but the expected
values of δt for the actions are ordered in the same way as
the expected value of the probability of having δt > 0, then
ACLA still converges to an optimal policy. This trivially holds
for a deterministic environment.

Comparison with previous algorithms. It is known that
better convergence guarantees exist for on-policy methods
when combined with function approximators [11], and there-
fore QV-learning and ACLA might work better than Q-
learning. An advantage is also that compared to Sarsa, QV-
learning and ACLA are less sensitive to exploration actions.
Sarsa can make a large update if an action occurs with low
probability that has been tried few times and has a very
large negative value. QV-learning and ACLA learn the state’s
value and are therefore less vulnerable for exploration. A last
possible advantage is that the V-function is updated with all
experiences, whereas the Q-function has to be updated for a
specific action. This may cause the V-function to learn faster
than a Q-function. Because the state value-function receives
more updates, this may also cause faster bootstrapping of the
policy. Although many of these advantages are in principle
shared by Actor-Critic methods, the experiments have to
indicate whether Actor-Critic performs better or worse than
the two new algorithms. A disadvantage of these algorithms
is an additional learning parameter.

IV. EXPERIMENTS

We performed seven experiments with different maze tasks
and the mountain car problem to compare QV-learning and
ACLA to other value-function-based RL algorithms. In the
first two experiments, the RL algorithms are combined with
tabular and neural network representations and are compared
on a small maze task. In the third and fourth experiment, the
RL algorithms are tested on a much larger maze using tabular
representations and ε-greedy and Boltzmann exploration. In
the fifth and sixth experiments we use a partially observable
maze and a dynamic maze respectively and neural networks as
function approximators. Finally, we perform experiments with
neural networks on the mountain car problem.

A. Small Maze Experiment
We compare QV(λ)-learning and ACLA(λ) to naive Q(λ)

[11], Sarsa(λ), and AC(λ). AC(λ) uses eligibility traces for
both the Actor and the Critic [11]. We performed experiments
with Sutton’s Dyna maze shown in figure 1. This simple maze
consists of 9× 6 states and there are four actions; north, east,
south, and west. We kept the maze small, since we also want to
use neural networks in the experiments and wanted to prevent
too much computational cost. The goal is to arrive at the goal
state G as soon as possible starting from the starting state
denoted by S under the influence of stochastic (noisy) actions.

Experimental set-up. The reward for arriving at the goal
is 100. When the agent bumps against a wall or border of
the environment it stays still and receives a reward of -2.
For other steps the agent receives a reward of -0.1. A trial

S

G

P

Fig. 1. Sutton’s Dyna maze. The starting position is indicated by S and the
goal position is indicated by G. In the partially observable maze of the fifth
experiment the goal position is P and the starting position is arbitrary.

is finished after the agent hit the goal or 1000 actions have
been performed. The random replacement (noise) in action
execution is 20%. We use λ values of 0.0, 0.6, and 0.9. We
use ε-greedy exploration with fixed ε = 10%.

TABLE I
TABULAR LEARNING RATES α/β (AND DISCOUNT FACTORS) FOR THE

ALGORITHMS GIVEN DIFFERENT VALUES FOR λ.

λ QV ACLA Q Sarsa AC
0.0 0.15/0.15 (0.98) 0.1/0.05 (0.98) 0.25 (0.9) 0.2 (0.9) 0.15/0.05 (0.98)
0.6 0.15/0.10 (0.98) 0.15/0.04 (0.98) 0.15 (0.9) 0.2 (0.9) 0.15/0.03 (0.98)
0.9 0.15/0.04 (0.9) 0.1/0.03 (0.9) 0.1 (0.9) 0.1 (0.9) 0.1/0.03 (0.9)

1) Results for a Tabular Representation.: We performed
experiments consisting of 50,000 learning steps and averaged
the results of 500 simulations. For evaluation we measured
after each 2,500 steps the average reward intake during that
period. We first performed simulations to find the best learning
rates and discount factors for the different values of λ for the
different RL algorithms. We used the learning rates shown in
Table I. Some algorithms use two learning rates (α and β).

TABLE II
FINAL RESULTS FOR A TABULAR REPRESENTATION WITH DIFFERENT

VALUES FOR λ. RESULTS ARE AVERAGES OF 500 SIMULATIONS.

Method λ = 0.0 λ = 0.6 λ = 0.9 Rank
QV 4.58 ± 0.16 4.52 ± 0.23 4.48 ± 0.25 1
ACLA+ 4.54 ± 0.19 4.42 ± 0.27 4.47 ± 0.25 2/3/4
Q 4.53 ± 0.22 4.42 ± 0.26 4.16 ± 0.35 2/3/4
Sarsa 4.52 ± 0.23 4.43 ± 0.33 4.26 ± 0.31 2/3/4
AC 4.29 ± 0.29 4.00 ± 0.35 3.75 ± 0.61 5

In Table II we show average results and standard deviations
of 500 simulations of the final reward intake during the last
2500 learning-steps. The best final results for this small maze
are obtained with λ = 0.0. We also see that QV-learning has
the best final performance for this problem and significantly
(p < 0.01) outperforms all other algorithms. Finally, we note
that for high λ values, QV(λ)-learning and ACLA(λ) perform
much better than the other algorithms. The Rank of each
algorithm is computed with the student t-test using the results
of the best value for λ.

In Table III we show average results and standard deviations
of 500 simulations of the total summed reward (adding all
20 average reward intakes after each 2,500 steps) during
the entire trial lasting 50,000 learning-steps. This evaluation
measure shows the overall performance and the learning rate
with which good solutions are obtained. The table shows

TABLE III
TOTAL SUMMED RESULTS FOR A TABULAR REPRESENTATION WITH

DIFFERENT VALUES FOR λ. RESULTS ARE AVERAGES OF 500
SIMULATIONS.

Method λ = 0.0 λ = 0.6 λ = 0.9 Rank
QV 85.4 ± 3.1 85.2 ± 4.2 83.4 ± 4.6 2
ACLA+ 86.1 ± 4.9 86.2 ± 4.7 85.1 ± 6.2 1
Q 81.6 ± 4.8 81.5 ± 5.1 76.0 ± 5.2 4
Sarsa 82.0 ± 4.6 83.2 ± 5.9 78.5 ± 5.5 3
AC 78.1 ± 5.7 76.7 ± 6.8 69.5 ± 13.0 5

that ACLA+ has the best overall performance and learns
significantly faster for all values for λ. QV-learning comes
as second best and Actor-Critic performs worst.

2) Results for Neural Networks.: We also performed ex-
periments with neural networks as function approximators. As
input-vector we used 54 inputs that indicate whether the agent
is in that location. The state and actions use separate neural
networks consisting of 20 hidden units and no skip-weights
or input-output connections (which would allow for a tabular
solution). This experiment was primarily conducted to see the
difference in learning behavior between a tabular representa-
tion and the use of a neural network. We let the algorithms
run for 100,000 learning steps and measured performance after
each 5,000 steps. The experimental results are averages of 100
simulations.

TABLE IV
NEURAL NETWORK LEARNING RATES α/β (AND DISCOUNT FACTORS) FOR

THE ALGORITHMS GIVEN DIFFERENT VALUES FOR λ.

λ QV ACLA Q Sarsa AC
0.0 0.04/0.04 (0.9) 0.1/0.02 (0.98) 0.04 (0.9) 0.04 (0.9) 0.02/0.02 (0.98)
0.6 0.03/0.03 (0.9) 0.1/0.01 (0.98) 0.03 (0.9) 0.03 (0.9) 0.02/0.03 (0.9)
0.9 0.03/0.01 (0.9) 0.1/0.01 (0.9) 0.005 (0.9) 0.005 (0.9) 0.01/0.02 (0.9)

Parameters. We first performed experiments to set the best
learning rates and discount factors. We used the learning rates
shown in Table IV. For this problem we used ACLA− instead
of ACLA+ since it performed slightly better.

Table V shows the final results for the last 5,000 learning
steps. The table shows that ACLA− performs best in general,
although for λ = 0.9 QV-learning is the best algorithm. Actor-
Critic again performs worst of all algorithms.

TABLE V
FINAL RESULTS (AVERAGE REWARD FOR LAST 5,000 STEPS) WITH

NEURAL NETWORKS. RESULTS ARE AVERAGES OF 100 SIMULATIONS.

Algorithm λ = 0.0 λ = 0.6 λ = 0.9 Rank
QV 4.65 ± 0.08 4.59 ± 0.10 4.63 ± 0.10 3/4
ACLA− 4.71 ± 0.08 4.71 ± 0.07 4.49 ± 0.13 1
Q 4.67 ± 0.08 4.45 ± 0.5 4.48 ± 0.96 2/3/4
Sarsa 4.68 ± 0.08 4.57 ± 0.5 4.37 ± 1.12 2/3
AC 3.65 ± 1.9 3.32 ± 2.2 2.9 ± 2.2 5

In Table VI we show average results and standard deviations
of 100 simulations of the total summed reward (adding all
20 average reward intakes after each 5,000 steps) during the
entire trial lasting 100,000 learning-steps. The table shows that
ACLA− has the best overall performance and therefore learns
fastest, but QV-learning performs best for λ = 0.9.

TABLE VI
NEURAL NETWORK TOTAL SUMMED RESULTS FOR 100,000 LEARNING

STEPS WITH AVERAGE REWARD COMPUTATION AFTER EACH 5,000 STEPS.
RESULTS ARE AVERAGES OF 100 SIMULATIONS.

Algorithm λ = 0.0 λ = 0.6 λ = 0.9 Rank
QV 81.4 ± 3.1 82.9 ± 1.9 82.1 ± 2.4 2
ACLA− 84.0 ± 2.1 84.6 ± 0.8 77.5 ± 2.6 1
Q 81.7 ± 2.9 70.1 ± 14.5 57.3 ± 17.8 3
Sarsa 77.4 ± 3.3 61.9 ± 18.1 49.6 ± 20.0 4
AC 56.4 ± 31.0 54.0 ± 36.3 33.7 ± 32.7 5

B. A Larger Maze Environment
We compare QV(λ)-learning and ACLA(λ) to naive Q(λ),

Sarsa(λ), and AC(λ) with tabular representations on a larger
maze shown in Fig. 2. The goal is again to arrive at the goal
state G as soon as possible starting from the starting state
denoted by S under the influence of stochastic (noisy) actions.

S
G

Fig. 2. The larger maze. The starting position is indicated by S and the goal
position is indicated by G.

Experimental set-up. The reward function is the same as
before. A trial is finished if the agent hit the goal or 10,000
actions have been performed. The random replacement in
action execution is 20%. We use λ values of 0.0, 0.6, 0.9.

1) ε-greedy exploration: We performed experiments con-
sisting of 400,000 learning steps with a tabular representation
and ε-greedy exploration with ε = 0.1. We averaged the results
of 50 simulations. For evaluation we measured after each
20,000 steps the average reward intake during that period. We
first performed simulations to find the best learning rates and
discount factors for the different values of λ for the different
RL algorithms. We used the learning rates shown in Table VII.

TABLE VII
TABULAR LEARNING RATES α/β (AND DISCOUNT FACTORS) FOR THE

ALGORITHMS GIVEN DIFFERENT VALUES FOR λ.

λ QV ACLA Q Sarsa AC
0.0 0.3/0.3 (0.99) 0.05/0.2 (0.99) 0.35 (0.98) 0.35 (0.97) 0.15/0.15 (0.98)
0.6 0.3/0.1 (0.99) 0.15/0.1 (0.99) 0.15 (0.97) 0.2 (0.99) 0.1/0.1 (0.99)
0.9 0.25/0.04 (0.99) 0.1/0.06 (0.99) 0.05 (0.96) 0.1 (0.995) 0.04/0.04 (0.99)

In Table VIII we show average results and standard devia-
tions of 50 simulations of the final reward intake during the last
20,000 learning-steps. ACLA+ significantly outperforms the
other algorithms, and Sarsa and Actor-Critic perform worst.
Note that (naive) Q(λ)-learning fails completely for λ = 0.9.

In Table IX we show average results and standard deviations
of 50 simulations of the total summed reward (adding all 20

TABLE VIII
FINAL RESULTS (AVERAGE REWARD FOR LAST 20,000 STEPS) ON THE

LARGE MAZE FOR A TABULAR REPRESENTATION WITH DIFFERENT

VALUES FOR λ. RESULTS ARE AVERAGES OF 50 SIMULATIONS.

Method λ = 0.0 λ = 0.6 λ = 0.9 Rank
QV 1.15 ± 0.09 1.20 ± 0.05 1.19 ± 0.05 2/3
ACLA+ 1.24 ± 0.02 1.20 ± 0.02 1.22 ± 0.02 1
Q 1.19 ± 0.04 1.17 ± 0.05 0.27 ± 0.30 2/3
Sarsa 1.12 ± 0.06 1.13 ± 0.03 0.95 ± 0.10 5
AC 1.15 ± 0.03 1.09 ± 0.04 0.88 ± 0.19 4

average reward intakes after each 20,000 steps) during the en-
tire trial lasting 400,000 learning-steps. It clearly indicates that
ACLA+ learns fastest and has the best overall performance.

TABLE IX
TOTAL SUMMED RESULTS FOR A TABULAR REPRESENTATION WITH

DIFFERENT VALUES FOR λ. RESULTS ARE AVERAGES OF 50 SIMULATIONS.

Method λ = 0.0 λ = 0.6 λ = 0.9 Rank
QV 17.2 ± 0.5 18.7 ± 0.4 18.9 ± 0.7 2
ACLA+ 19.7 ± 0.8 21.3 ± 0.3 21.6 ± 0.6 1
Q 17.1 ± 0.6 15.0 ± 1.7 -0.5 ± 2.1 4/5
Sarsa 14.5 ± 1.0 17.0 ± 0.7 13.7 ± 0.8 4/5
AC 17.5 ± 0.6 18.1 ± 1.0 10.8 ± 3.2 3

2) Boltzmann exploration: We also performed experiments
with the large maze using Boltzmann exploration. Again a trial
consists of 400,000 learning steps with a tabular representa-
tion. We averaged the results of 100 simulations. For evalua-
tion we measured after each 20,000 steps the average reward
intake during that period. We first performed simulations to
find the best learning rates, discount factors, and greediness
(inverse of the temperature) used in the Boltzmann exploration
rule. We use a fixed value for the greediness: schemes for
increasing the greediness online did not improve results. We
used different values of λ (0.0 and 0.9). The learning rates are
shown in Table X.

TABLE X
TABULAR LEARNING RATES α/β (AND DISCOUNT FACTORS, AND

GREEDINESS) FOR THE ALGORITHMS GIVEN DIFFERENT VALUES FOR λ.

λ QV ACLA Q Sarsa AC
0.0 0.3/0.3 (0.99, 9) 0.02/0.25 (0.99, 13) 0.3 (0.98, 9) 0.3 (0.98, 9) 0.02/0.4 (0.99, 10)
0.9 0.2/0.02 (0.99, 8) 0.02/0.05 (0.99, 9) 0.07 (0.99, 8) 0.1 (0.99, 8) 0.005/0.25 (0.99, 9)

In Table XI we show average results and standard deviations
of 100 simulations of the final reward intake during the
last 20,000 steps. It shows that using Boltzmann exploration
ACLA performs best, but is closely followed by AC.

In Table XII we show average results and standard devia-
tions of 100 simulations of the total summed reward. It clearly
indicates that ACLA+ learns fastest and has the best overall
performance.

C. A Partially Observable Maze
In this experiment we will use Markov localization and neu-

ral networks to solve a partially observable Markov decision
process in case the model of the environment is known. We use

TABLE XI
FINAL RESULTS (AVERAGE REWARD FOR LAST 20,000 STEPS) FOR A

TABULAR REPRESENTATION WITH BOLTZMANN EXPLORATION WITH

DIFFERENT VALUES FOR λ. RESULTS ARE AVERAGES OF 100
SIMULATIONS.

Method λ = 0.0 λ = 0.9 Rank
QV 1.24 ± 0.18 0.74 ± 0.25 3/4/5
ACLA+ 1.41 ± 0.02 1.38 ± 0.03 1
Q 1.23 ± 0.20 0.67 ± 0.17 3/4/5
Sarsa 1.21 ± 0.20 0.66 ± 0.19 3/4/5
AC 1.39 ± 0.02 1.15 ± 0.36 2

TABLE XII
TOTAL SUMMED RESULTS FOR A TABULAR REPRESENTATION WITH

BOLTZMANN EXPLORATION WITH DIFFERENT VALUES FOR λ. RESULTS

ARE AVERAGES OF 100 SIMULATIONS.

Method λ = 0.0 λ = 0.9 Rank
QV 18.1 ± 2.8 10.9 ± 4.0 2/3
ACLA+ 22.5 ± 0.8 22.8 ± 1.7 1
Q 13.7 ± 2.6 8.1 ± 3.1 4/5
Sarsa 13.5 ± 2.6 9.9 ± 3.3 4/5
AC 18.1 ± 1.7 16.9 ± 6.6 2/3

Markov localization to track the beliefstate (or probability dis-
tribution over the states) given an action and observation after
each time-step. This beliefstate is then the input for the neural
network. We used 20 hidden neurons in our experiments, and
the maze shown in Fig. 1 with the goal indicated by P and
each state can be the starting state. The initial beliefstate is a
uniform distribution where only states that are not obstacles
get assigned a belief. After each action at the beliefstate bt(s)
is updated with the observation ot+1:

bt+1(s) = ηP (ot+1|s)
∑

s′

T (s′, at, s)bt(s
′)

Where η is some normalization factor. The observations are
whether there is a wall to the north, east, south, and west.
Thus, there are 16 possible observations. We use 20% noise
in the action execution and 10% noise for observing each
independent wall (or empty cell) at the sides. That means
that a correct observation is observed with probability 0.94

= 66%. Note that we use a model of the environment to be
able to compute the beliefstate, and the model is based on the
uncertainties in the transition and observation functions.

We performed experiments consisting of 100,000 learn-
ing steps with a neural network representation and ε-greedy
exploration with ε = 0.1. We averaged the results of 100
simulations. For evaluation we measured after each 5,000
steps the average reward intake during that period. We first
performed simulations to find the best learning rates and
discount factors for the different values of λ for the different
RL algorithms. The learning rates are shown in Table XIII.

In Table XIV we show average results and standard devi-
ations of 100 simulations of the final reward intake during
the last 5,000 learning-steps. We observe that AC outperforms
the other algorithms. ACLA seems to suffer from the high
stochasticity in the partially obervable maze due to the noise
in the observations.

TABLE XIII
NEURAL NETWORK LEARNING RATES α/β (AND DISCOUNT FACTORS) FOR

THE ALGORITHMS GIVEN DIFFERENT VALUES FOR λ.

λ QV ACLA Q Sarsa AC
0.0 0.015/0.015 (0.98) 0.035/0.005 (0.99) 0.01 (0.95) 0.03 (0.99) 0.015/0.02 (0.95)
0.6 0.005/0.005 (0.98) 0.015/0.005 (0.9) 0.005 (0.95) 0.005 (0.95) 0.01/0.02 (0.99)
0.9 0.005/0.01 (0.95) 0.015/0.005 (0.95) 0.005 (0.9) 0.01 (0.95) 0.005/0.01 (0.9)

TABLE XIV
FINAL RESULTS (AVERAGE REWARD FOR LAST 5,000 STEPS) FOR A

NEURAL NETWORK REPRESENTATION ON THE PARTIALLY OBSERVABLE

MAZE. RESULTS ARE AVERAGES OF 100 SIMULATIONS.

Method λ = 0.0 λ = 0.6 λ = 0.9 Rank
QV 8.80 ± 0.33 8.90 ± 0.31 8.69 ± 0.36 2/3/4
ACLA- 8.18 ± 0.29 7.94 ± 0.30 7.47 ± 0.44 5
Q 8.83 ± 0.25 8.87 ± 0.31 8.79 ± 0.31 2/3/4
Sarsa 8.62 ± 0.34 8.87 ± 0.29 8.64 ± 0.53 2/3/4
AC 8.90 ± 0.31 9.02 ± 0.33 8.13 ± 1.14 1

In Table XV we show average results and standard devia-
tions of 100 simulations of the total summed reward (adding
all 20 average reward intakes after each 5,000 steps) during
the entire trial lasting 100,000 learning-steps.

TABLE XV
TOTAL SUMMED RESULTS FOR A NEURAL NETWORK REPRESENTATION

WITH DIFFERENT VALUES FOR λ. RESULTS ARE AVERAGES OF 100
SIMULATIONS.

Method λ = 0.0 λ = 0.6 λ = 0.9 Rank
QV 138.7 ± 4.9 98.6 ± 12.6 94.6 ± 11.5 1/2/3
ACLA- 131.3 ± 5.0 100.7 ± 4.3 88.3 ± 13.4 4
Q 115.6 ± 11.7 104.6 ± 16.6 97.8 ± 18.1 5
Sarsa 137.0 ± 6.2 99.6 ± 11.6 110.9 ± 17.1 1/2/3
AC 129.5 ± 10.7 137.9 ± 13.1 93.9 ± 25.0 1/2/3

D. Solving a Dynamic Maze
We also compared QV-learning and ACLA to Sarsa, Q-

learning and AC on a dynamic maze in which each trial there
are several obstacles at random locations. In order to deal
with this task the agent uses a neural network that receives as
inputs whether a particular state-cell contains an obstacle (1)
or not (0). The agent cannot go through obstacles or push them
away. At the start of each new trial there are between 4 and
7 obstacles generated at random positions and it is made sure
that a path to the goal exists from the fixed starting location
S. A specific instance of this maze is shown in Fig. 3. Since
there are many instances of this maze, essentially the neural
network has to learn the knowledge of a path planner. Since
preliminary experiments indicated that the best results were
obtained with λ = 0, we do not show results with the use of
eligibility traces.

Parameters. We used ε-greedy exploration with a fixed
ε = 0.1. The reward function is the same as before. We
used 20% noise in action execution. A simulation lasts for
3,000,000 learning steps and we measure performance after
each 150,000 steps. A trial ends after 1000 actions or when
the goal is hit. Results are averages of 50 simulations. We used
feedforward neural networks with 60 sigmoidal hidden units.

G

S

Fig. 3. The dynamic 9 × 6 maze. The starting position is denoted by S

and the goal position is indicated by G. The obstacles indicated in black are
dynamically generated at the start of each new trial.

The best found learning rates are shown in Table XVI, but
note that it was difficult to do many experiments for finding
optimal learning rates.

TABLE XVI
NEURAL NETWORK LEARNING RATES α/β (AND DISCOUNT FACTORS) FOR

THE ALGORITHMS FOR THE DYNAMIC MAZE.

λ QV ACLA+ Q Sarsa AC
0.0 0.005/0.005 (0.9) 0.1/0.005 (0.98) 0.008 (0.9) 0.008 (0.9) 0.005/0.005 (0.9)

Table XVII shows the final and total performance of the
different algorithms. Q-learning outperforms the other algo-
rithms on this problem: it reaches the best final performance
and also has the best overall learning performance.

TABLE XVII
FINAL RESULTS (AVERAGE REWARD FOR LAST 150,000 STEPS) AND

TOTAL SUMMED RESULTS FOR A NEURAL NETWORK REPRESENTATION ON

THE DYNAMIC MAZE. RESULTS ARE AVERAGES OF 50 SIMULATIONS.

Method Final Rank Total Rank
QV 6.05 ± 0.18 2 103.6 ± 2.2 2
ACLA+ 5.72 ± 0.18 4 98.6 ± 1.5 3/4
Q 6.22 ± 0.15 1 108.7 ± 2.6 1
Sarsa 5.91 ± 0.18 3 97.6 ± 2.9 3/4
AC 1.86 ± 0.63 5 27.0 ± 6.7 5

E. Mountain Car Experiments

We finally compare the RL algorithms on the mountain car
problem, see [7] for a description of this problem. We use
neural networks as representations of the value functions and
used 20 sigmoidal hidden units. There are 2 inputs (velocity
and position) and 3 actions (right, left, no-action). The reward
function emits -0.1 on every step and 0 if the goal is hit. The
maximum number of actions in a trial is set to 1000. The
number of trials in an experiment is set to 76,000. The results
are averages of 30 simulations. The best found learning rates
are shown in Table XVIII, we only report results for λ = 0.0,
because it gave the best results.

TABLE XVIII
NEURAL NETWORK LEARNING RATES α/β (AND DISCOUNT FACTORS) FOR

THE ALGORITHMS FOR THE MOUNTAIN CAR PROBLEM.

λ QV ACLA+ Q Sarsa AC
0.0 0.04/0.013 (0.99) 0.07/0.047 (0.99) 0.06 (0.99) 0.063 (0.99) 0.02/0.007 (0.99)

Table XIX shows the results. Sarsa significantly outperforms
the other methods on this problem. It also learns very fast: its
overall learning performance is better than the final perfor-
mance of all other algorithms.

TABLE XIX
FINAL RESULTS (AVERAGE NUMBER OF STEPS TO REACH THE GOAL FOR

LAST 4,000 TRIALS) AND TOTAL AVERAGE NUMBER OF STEPS TO REACH

THE GOAL FOR A NEURAL NETWORK REPRESENTATION ON THE

MOUNTAIN CAR PROBLEM. RESULTS ARE AVERAGES OF 30 SIMULATIONS.

Method Final Rank Total Rank
QV 147 ± 3 2/3/4 153 ± 3 2/3
ACLA- 144 ± 10 2/3/4 153 ± 5 2/3
Q 153 ± 3 5 157 ± 2 4/5
Sarsa 126 ± 1 1 131 ± 3 1
AC 145 ± 6 2/3/4 158 ± 9 4/5

V. DISCUSSION

The RL algorithms were compared on many different prob-
lems. If we put the ranks of all seven experiments in tables
for the final performance of the learning controller, we get the
overall results shown in Table XX. This table shows that the
overall results of QV-learning and ACLA are better than the
overall final results obtained with the other three algorithms.

TABLE XX
THE RANKS OF THE DIFFERENT ALGORITHMS WHEN WE LOOK AT FINAL

PERFORMANCE OF THE LEARNED CONTROLLERS.

Experiment QV ACLA Q Sarsa AC
1 (Tab.) 1 2/3/4 2/3/4 2/3/4 5
2 (NN) 3/4 1 2/3/4 2/3 5
3 (Tab.) 2/3 1 2/3 5 4
4 (Tab.) 3/4/5 1 3/4/5 3/4/5 2
5 (NN) 2/3/4 5 2/3/4 2/3/4 1
6 (NN) 2 4 1 3 5
7 (NN) 2/3/4 2/3/4 5 1 2/3/4

Total 19 18 21.5 21.5 25

The overall learning performance of the different algorithms
where the performances are measured during a whole learning
trial are shown in Table XXI. QV-learning and ACLA have
the best overall performance and therefore are the fastest RL
algorithms on the tested problem.

TABLE XXI
THE RANKS OF THE DIFFERENT ALGORITHMS WHEN WE LOOK AT TOTAL

LEARNING PERFORMANCE DURING A COMPLETE TRIAL.

Experiment QV ACLA Q Sarsa AC
1 (Tab.) 2 1 4 3 5
2 (NN) 2 1 3 4 5
3 (Tab.) 2 1 4/5 4/5 3
4 (Tab.) 2/3 1 4/5 4/5 2/3
5 (NN) 1/2/3 4 5 1/2/3 1/2/3
6 (NN) 2 3/4 1 3/4 5
7 (NN) 2/3 2/3 4/5 1 4/5

Total 15 14 26.5 22.5 27

The results of independent experiments have also shown
some interesting results. Boltzmann exploration seems to be
a good option for ACLA and AC, since these methods learn
preference values for actions and therefore select actions which

are clearly optimal in all cases. AC may perform better with
eligibility traces, if we only use the traces for the critic and
not also for the actor. We did not try that possibility. In
most cases eligibility traces did not improve results, although
learning speed improved in the large maze. A strange problem
for using eligibility traces is the dynamic maze, where the
obstacles that remain stationary during a trial get very large
traces compared to the position of the agent. Therefore, for
this problem eligibility traces failed.

VI. CONCLUSION

We introduced two new value-function based reinforcement
learning algorithms, ACLA and QV(λ)-learning, which are
based on TD(λ) methods for learning a state value-function,
and another update rule to learn either Q-values or preference
values for selecting actions. The new algorithms have some
advantages compared to Sarsa and Q-learning, and one of
them is that the state value-function is updated more often
than a state-action value function, which can cause faster
bootstrapping of the policy. Another advantage is that these
algorithms use TD(λ)-methods and therefore are less sensitive
to exploration actions and work better with eligibility traces
than the other methods. The experiments showed that ACLA
and QV-learning in general learn fastest and reach the best
final performance, although the results differ a lot for different
experiments. In future work we want to use ensembles of RL
algorithms and let the agent discover which algorithm works
best for a specific environment.

REFERENCES

[1] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-13:834–846,
1983.

[2] R. Bellman. Dynamic Programming. Princeton University Press, 1957.
[3] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement

learning: A survey. Journal of Artificial Intelligence Research, 4:237–
285, 1996.

[4] V.R. Konda and V. Borkar. Actor-critic type learning algorithms for
Markov decision processes. SIAM Journal on Control and Optimization,
38(1):94–123, 1999.

[5] K. S. Narendra and M. A. L. Thathatchar. Learning automata - a survey.
IEEE Transactions on Systems, Man, and Cybernetics, 4:323–334, 1974.

[6] G.A. Rummery and M. Niranjan. On-line Q-learning using connection-
ist sytems. Technical Report CUED/F-INFENG-TR 166, Cambridge
University, UK, 1994.

[7] S. P. Singh and R. S. Sutton. Reinforcement learning with replacing
eligibility traces. Machine Learning, 22:123–158, 1996.

[8] S.P. Singh, T. Jaakkola, M.L. Littman, and C. Szepesvari. Convergence
results for single-step on-policy reinforcement-learning algorithms. Ma-
chine Learning, 38(3):287–308, 2000.

[9] R. S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3:9–44, 1988.

[10] R. S. Sutton. Generalization in reinforcement learning: Successful
examples using sparse coarse coding. In D. S. Touretzky, M. C.
Mozer, and M. E. Hasselmo, editors, Advances in Neural Information
Processing Systems 8, pages 1038–1045. MIT Press, Cambridge MA,
1996.

[11] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
The MIT press, Cambridge MA, A Bradford Book, 1998.

[12] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis,
King’s College, Cambridge, England, 1989.

[13] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning,
8:279–292, 1992.

