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Abstract—Recognizing the semantic content of an image is
a challenging problem in computer vision. Many researchers
attempt to apply local image descriptors to extract features
from an image, but choosing the best type of feature to use
is still an open problem. Some of these systems are only
trained once using a fixed descriptor, like the Scale Invariant
Feature Transform (SIFT). In most cases these algorithms
show good performance, but they do not learn from their
mistakes once training is completed. In this paper a continuous
deep neural network feedback system is proposed which
consists of an adaptive neural network feature descriptor, the
bag of visual words approach and a neural classifier. Two
initialization methods for the neural network feature descriptor
were compared, one where it was trained on SIFT descriptor
output and one where it was randomly initialized. After initial
training, the system propagates the classification error from the
neural network classifier through the entire pipeline, updating
not only the classifier itself, but also the type of features
to extract. Results show that for both initialization methods
the feedback system increased accuracy substantially when
regular training was not able to increase it any further. The
proposed neural-SIFT feature descriptor performs better than
the SIFT descriptor itself even with a limited number of
training instances. Initializing on an existing feature descriptor
is beneficial when not a lot of training samples are available.
However, when there are a lot of training samples the system
is able to construct a well-performing descriptor, solely based
on classifier feedback.

I. INTRODUCTION

One of the most challenging problems in computer vision
is to recognize the semantic content of an image. This is
especially the case when objects vary in pose, where there
is occlusion and where differing light conditions are present.
Computer vision is important, for example, in image retrieval
tasks, where a search query is given and images containing
this query should be reported back. Such systems are useful,
for example, in medical diagnosis. In robotics a robot has a
hard time navigating to a certain place when it can’t localize
itself. To aid a robot in localization, scene recognition
has shown to be very helpful [1], [2]. Additionally, many
tasks for a robot involve manipulating certain objects (e.g.,
bringing coffee or finding emergency buttons in residential
care homes). Without knowing which object is which, a
robot has difficulty completing any of these tasks.

A common approach to object recognition in complex
and changing environments is to extract local feature de-
scriptions from images and attach object class labels to them
[3]. Given the extracted features from a test image, these are

then matched against features from each class. When there
are enough matching features for an object class in a test
image, that specific class is detected.

Finding the best features to use is still an open problem.
Some use deep learning methods to learn to create features
during training [4], [5], [6]. Others apply feature extraction
methods using a fixed algorithm. Such algorithms have
shown to give good performance in many applications [7],
[8], [9], [10], [11], [12], however, the downside of this type
of algorithms is that they are not trainable by design. After
training there is no feedback loop from the classifier to the
feature extraction stage to update the type of features to
extract, while there possibly could be room for improvement.

One of these feature descriptors is the well known
Scale Invariant Feature Transform (SIFT) [13]. SIFT extracts
potential information-rich keypoints and describes them by
constructing a histogram of gradient orientations. In recent
studies instead of detecting these keypoints a dense fixed
grid of evenly spaced keypoints has been used to describe
the whole image. To reduce the size of the feature space
which results from using a dense fixed grid the bag of
visual words approach has been proposed [7]. Inspired by
the bag-of-words approach in text classification (e.g., [14])
this approach builds a vocabulary of visual keywords by
clustering extracted feature vectors. It uses this vocabulary
to construct a histogram counting the number of keyword
occurrences in the image, which can then be given to a final
classifier.

This paper proposes a continuous feedback system to
improve existing feature descriptors. To create a trainable
feature descriptor a fixed algorithm has to be made trainable.
For this purpose, trainable feature descriptors like artificial
neural networks can be applied which can be initially trained
on such algorithms. The popular SIFT algorithm will be used
for this purpose. Based on this trainable network (termed
‘neural-SIFT’) a system is proposed which allows for the
classification error to be propagated all the way back to the
feature extraction network (termed ‘full backpropagation’),
which in turn tries to improve its feature extraction capabil-
ities. To see what effect initialization on an existing feature
descriptor has on performance, the system is also tested
using a randomly initialized feature descriptor network.
Finally, the original and improved descriptor will be tested
in a different setting than in which it was trained, to see if
the improved descriptor is generalizable to other systems.



A support vector machine (SVM) [15] is applied for this
setting. Each setting is tested on 10 classes of the Caltech-
101 dataset and the full Corel-1k dataset. Results show
that the improved neural-SIFT descriptor achieves higher
performance than the neural-SIFT descriptor trained on the
output of the SIFT descriptor and the SIFT descriptor itself.
When using enough training samples starting with a random
initialization almost achieves the same level of performance
than with a SIFT-initialized descriptor. The improved neural-
SIFT descriptor also showed to be superior compared to the
original one when using a completely different classifier.

In Section II the SIFT descriptor and previous work
using the bag of visual words approach is discussed. Section
III provides the details of the neural-SIFT approach with
full backpropagation training. The experimental setup, the
performance of the system and a discussion regarding the
results are presented in Section IV. The main conclusions
are summarized in Section V.

II. RELATED WORK

A. SIFT descriptor
One of the most popular local image descriptors is the

Scale Invariant Feature Transform (SIFT) [13]. Typically,
SIFT detects stable salient keypoint regions which corre-
spond to parts in the image containing relevant information
and creates a description for each of them. The descriptions
of these keypoints are constructed in such a way that they
are invariant to scale, rotation and partially invariant to
affine transformations and illumination changes. Instead of
detecting salient keypoints some have used a fixed partition-
ing scheme to represent the whole image [16], [17], [18].
This approach has been shown to perform similarly well
compared to keypoint detection [18].

To describe a keypoint the first step is to assign an
orientation to it, which is used in a later step to obtain
invariance to rotation. To determine the orientation a his-
togram is created consisting of 36 bins, each bin covering
10 degrees of a circle. The histogram is formed from the
gradient orientations of the neighboring points. For each
point in the 16×16 pixel window around the keypoint center
the gradient magnitude m and orientation θ are calculated
using pixel differences:

Gx(x, y) = G(x+ 1, y)−G(x− 1, y)

Gy(x, y) = G(x, y + 1)−G(x, y − 1)

m(x, y) =
√
Gx(x, y)2 +Gy(x, y)2

θ(x, y) = tan−1

(
Gy(x, y)

Gx(x, y))

)
where G(x, y) is the pixel intensity at position (x, y) in
the Gaussian smoothed grayscale image, Gx and Gy are
the pixel differences in the x and y directions, respectively.
Each pixel point is weighted by its gradient magnitude and
by a Gaussian-weighted circular window with σ = 1.5.
When the histogram is created the highest peak is detected
and used as the keypoint’s orientation.

For creating the descriptor again the gradient magnitude
and orientations are used, where the keypoint orientation is
subtracted from each pixel orientation. Next, the window
is divided in 4 × 4 cells. For each cell a histogram is

created consisting of 8 orientation bins (each covering 45
degrees). In a similar way as described above each histogram
is filled with the weighted magnitudes of the pixels. The
16 histograms are concatenated to form a 128-dimensional
descriptor. In a final step the descriptor is normalized to unit
length, values higher than 0.2 are thresholded and given the
value 0.2 to overcome some illumination effects. After that,
the descriptor is normalized again to unit length.

B. Bag of visual words
The bag of visual words is inspired by the bag-of-

words method frequently used in text classification [14],
[19]. In text classification word frequency information is
gathered and stored in a histogram. Based on this histogram
a classifier can determine the semantic context of the text.
Apparently there are specific words that have high indicative
power for certain contexts. The bag of words method has
been proposed for the visual domain as well [7], which has
shown to work surprisingly well in image classification and
categorization [7], [8], [9], [10], [11], [12].

For the bag of visual words approach the idea is to cluster
the extracted features from training images to obtain visual
keywords. As a result, these visual keywords represent sim-
ilar features. The extracted features from a given test image
are then matched to the visual keywords and the frequency of
matches per cluster is stored in a histogram. This histogram
is then used as input for a classifier. The counting of matches
per cluster is called the hard bag-of-features approach [7], as
it is employing a hard assignment scheme. Other approaches
using a soft assignment approach to construct a histogram
have been introduced. These approaches give weights to
multiple clusters which are close to a feature. Weights can
be given by ranking nearest neighbors by distance [20] or
using the distances itself [21], [22].

Histograms have the advantage of simplicity and com-
putational efficiency, but ignore any spatial information in
the image, information which could be of potential use. It
is then also highly surprising that this method shows such
great results, even under challenging real-world conditions
including intra-class variations and background clutter [9],
[23]. This method has even showed its strength in object and
scene retrieval in videos [7].

The lack of spatial information has been addressed by
using so-called spatial pyramids, first introduced by [24] and
later adopted to use with the bag of visual words approach by
[11]. The idea behind this is to divide the image into multiple
regions and create a histogram for each of them. Spatial
information can be captured by combining these histograms
to form a set of histograms (e.g., by concatenation). This
approach can be applied at different resolutions to create an
even richer representation of an image. It is shown that this
method can often outperform the single histogram approach
[24], [11], [16], [25].

Multiple approaches to clustering the visual keywords
have been proposed, some have used k-means [7], [9], others
have used Gaussian mixture models (GMMs) [10], [26]. k-
means clustering [27] provides a hard assignment scheme,
while with GMMs a soft assignment scheme is used where a
single feature can belong to multiple clusters. Multiple soft
assignment schemes were compared to the traditional hard
assignment scheme and the soft assignment approaches have
been shown to perform significantly better [8].



III. NEURAL-SIFT
One approach of improving upon fixed feature descrip-

tors, like SIFT, is to make these feature descriptors train-
able. This section first proposes the neural-SIFT descriptor,
a neural network which mimics the output of the SIFT
descriptor. The next part describes the bag of visual words
approach which constructs a histogram of visual keyword
occurrences. This is done by applying a sliding window over
the image, extracting feature vectors from each window and
comparing them to the established keyword vocabulary. This
histogram is used as input for the neural network classifier
and is described in Section III-C. The final part presents
the full backpropagation training scheme, where the error of
the neural classifier is propagated all the way back to the
neural-SIFT descriptor.

A. Neural-SIFT feature extraction
Before extracting features from an image the same

preprocessing steps are applied as are used by SIFT (i.e.,
conversion to gray scale and applying Gaussian smoothing).

In creating the SIFT descriptor a fixed-sized window
around a keypoint is used. Typically, the size is chosen to
be 16 × 16 pixels. For each point in the window gradient
magnitudes and orientations are calculated using the four
direct adjacent points. This means that by providing only the
16 × 16 pixels for a given window as input for the neural
network results in incomplete information. Therefore, the
neural network receives a 18× 18 window as input.

The target function of the network is the local image
descriptor function used in the SIFT algorithm: the SIFT
descriptor. The dimensionality of the SIFT descriptor is 128,
therefore the output layer of the neural network consists of
128 units as well. One modification to the SIFT algorithm
is made: the keypoint’s orientation will not be used to make
the keypoint rotation invariant. The reason for this is that
preliminary experiments showed that SIFT performed better
on the datasets without this step than with. This could be
due to the nature of the datasets in which not many rotated
objects occur. Another consideration for this is that the
function to learn as a consequence becomes easier to fit
using a neural network.

As a single hidden layer in a network is enough to fit
any continuous function [28] only one hidden layer is used.
To establish the number of hidden units to use one has to
consider that when applying full backpropagation training
in a later stage the network will be further trained on the
same training data. When the number of hidden units is large
overfitting can occur more easily. So, even though a smaller
train and validation error for this network can be obtained
by using more hidden units, using less units may give better
results at a later stage. The number of units as well as the
type of activation function to use in the hidden layer are
determined empirically, taking these aspects into account.
For the output layer the linear activation function is used as
the network is dealing with a continuous target function.

Even though the SIFT descriptor is computed using
local neighborhood pixels all layers are fully connected.
This enables the network to possibly learn more complex
functions when the error from the classifier is included. Both
the input and the hidden layer have a single bias unit which
always has a value of +1 as input.

A sliding window over the whole image is applied
which results in a large number of patches per image.
Considering all images this results in a large number of
training samples. Therefore, classic online gradient descent
learning is used in conjunction with L2-norm regularization
for training this network. Preliminary experiments showed
that 200 epochs was a sufficient amount of epochs for the
network to stabilize. Training is therefore terminated after a
fixed amount of 200 epochs.

B. Bag of visual words
After the neural-SIFT network is trained the visual vo-

cabulary is constructed by creating clusters which represent
the data as closely as possible. GMMs showed to be too
computationally intensive when dealing with 128 dimen-
sional feature vectors. Therefore, the clusters are determined
using the k-means algorithm which involves choosing the
distance metric and the number of clusters to use. As
distance metric the squared Euclidean distance is chosen,
the number of clusters to use is determined empirically.

The next step is to create an image histogram which
serves as input for the final classifier, of which many hard
and soft assignment schemes are available. For this system
a soft assignment scheme is applied as they are shown
to perform significantly better than the hard methods [8].
One example soft approach transforms the distances from a
feature vector to each cluster centroid to a sort of similarity
value [21]. Another uses the codeword uncertainty method
which calculates the probability of a feature vector belonging
to a certain cluster, where the amount of probability mass is
normalized [22]. A hybrid approach is used for this system
in which similarities are calculated in a similar fashion as
in [21] and the amount of probability mass is normalized
similarly as in [22]. This method computes the similarity
si,j between feature vector fi and cluster center cj using:

si,j =
exp(−ζ ∗ di,j)∑C
k=1 exp(−ζ ∗ di,k)

(1)

where di,j is the distance between feature vector fi and
cluster center cj and ζ is a constant specifying how much
to penalize distance. The more the distance is penalized the
more this function approximates the actual max function.

When for each patch in the image the vector of similarity
values has been computed they are summed and divided by
the number of windows (F ) to obtain the required image
histogram entry gj for cluster j:

gj =
1

F

F∑
i=1

si,j (2)

To make this histogram more suitable for the classifier
input the histogram is normalized to the range [−1,+1] for
each input xi by:

xi =
2 ∗ (gi −mini)
maxi −mini

− 1 (3)

where mini and maxi are the lowest and highest value of
gi over all the training data, respectively.



C. Neural classifier
The result of the previous stage is a histogram of visual

word frequencies. The dimensionality of this histogram
equals the number of clusters used, C. The number of input
units for the neural network classifier, therefore, equals C
as well. The number of output units equals the number of
object classes N . As with the neural-SIFT network only one
hidden layer is used. Again, the number of hidden units and
the activation functions used were set experimentally. The
difference with respect to the neural-SIFT network is that
the target function in this case is a binary function where
each output unit corresponds to a one-versus-all classifier.
Therefore, the softmax function is used at the output layer.
All layers are fully connected and have an additional bias
unit. This time the number of training samples is much lower
than when training the neural-SIFT network. Therefore,
instead of using online learning iRPROP+ training [29] is
applied with L2-norm regularization. When not encountering
a better validation error within 50 epochs of the current
minimum, training is terminated and the stored weights at
the lowest point are applied.

D. Full backpropagation training
When all parts of the system are individually trained the

system as a whole is trained by propagating the error from
the classification output all the way back to the neural-SIFT
weights, using gradient descent. For this training scheme
the chain rule is applied and the whole pipeline can be split
up in three parts. First, the classification error is propagated
back to the input of the classifier network, which then equals
the error at the normalized image histogram. This part can
be derived in a similar fashion as one would derive the
update equation of the weights going from the input to the
hidden layer of a standard feedforward multilayer perceptron
(MLP). When deriving this update equation the final part
going from the weighted sum a, of the input x and weights
w, to a single weight wij equals:

∂aj
∂wij

=
∂

∂wij

(
C∑

k=1

xkwkj

)
= xi (4)

Deriving to the input instead the modification to be made
is that the derivative should not be with respect to a weight
wij , but to an input xi. This partial derivative then simply
results in wij .

Next, the error is further propagated through the steps
involved in creating the image histogram:

∂E

∂ff,e
=

C∑
n=1

(
C∑

k=1

[
∂E

∂xk

∂xk
∂gk

∂gk
∂sf,k

∂sf,k
∂df,n

]
∂df,n
∂ff,e

)
(5)

where E is the error at the classifier output, ff,e is the e-th
element of the feature vector corresponding to image patch
f , generated by the neural-SIFT network, and ∂E

∂xk
is the

already derived error at the input of the classifier network.
First, normalization to the range [−1,+1] is derived:

∂xk
∂gk

=
∂

∂gk

(
2 ∗ (gk −mink)
maxk −mink

− 1

)
=

2

maxk −mink
(6)

The following part corresponds to summing the similar-
ity values and dividing the resulting histogram by the number
of patches in the image:

∂gk
∂sf,k

=
∂

∂sf,k

(
1

F

F∑
l=1

sl,k

)
=

1

F
(7)

At this point the error is split up and given to each
individual image patch. This means that the subsequent
equations need to be applied for each image patch.

The next partial derivative is very similar to deriving a
softmax function. In this case there is a function within each
exponential function, for which the chain rule can be used.
The part that is left to derive is:

∂

∂df,k
(−ζdf,k) = −ζ (8)

Combining this with the derivative of the softmax func-
tion this results in:

∂sf,k
∂df,n

= −ζsf,k(δk,n − sf,n) (9)

where δk,n is the Kronecker delta function.
Finally, the distance computation is derived:

∂df,n
∂ff,e

=
∂

∂ff,e
‖ff − cn‖2

=
∂

∂ff,e

O∑
l=1

(ff,l − cn,l)2

= 2(ff,e − cn,e) (10)

When the error is calculated at the output of the neural-
SIFT network the final part of backpropagation begins where
the error with respect to the weights of the neural-SIFT
network are calculated. This follows the same update equa-
tions for a standard MLP. The only difference on this part is
that the error should be considered with respect to classifier
output. iRPROP+ training with L2-norm regularization is
used to update the weights. As with the neural classifier the
settings at the lowest validation error are stored. When no
lower validation error is encountered within 50 epochs of
the current lowest error training is stopped and the stored
settings are applied. This marks one complete iteration of
full backpropagation. After one single iteration the system
reaches a point where performance cannot be improved
anymore by using regular training schemes, but at this
point the descriptor has been updated. This translates to a
clustering which does not entirely match with the underlying
feature vectors. Therefore, the clustering and consequently
the neural classifier can be updated. When this retraining
is complete a second iteration of full backpropagation can
start. This cycle of full backpropagation and retraining can
be repeated indefinitely, until no more improvement can be
obtained.

IV. EXPERIMENTS AND RESULTS

A. Experimental setup
This section is divided into multiple parts. Section IV-B

provides a short overview of the used datasets and Section
IV-C describes the training results of the proposed system
with full backpropagation training. Results are compared to
systems using the SIFT descriptor and the original neural-



Fig. 1. On the left: example images of the Caltech-101 dataset showing
one image of each of the classes: airplanes, cameras, car sides, cellphones,
cups, helicopters, motorbikes, scissors, umbrellas and watches. On the right:
example images of the Corel-1k dataset showing one image of each of the
classes: African people, beaches, buses, dinosaurs, elephants, flowers, food,
horses, monuments and mountains.

SIFT descriptor. To investigate the influence of initializing
the neural-SIFT network on the SIFT descriptor, Section
IV-D compares the proposed system with using a randomly
initialized untrained neural network as feature extractor,
both using the full backpropagation training step. Finally, in
Section IV-E generalizability of the Neural-SIFT descriptor
is tested with the use of an SVM classifier.

Preliminary experiments were set up to determine the
number of hidden units and type of activation function to use
in the hidden layer of the neural-SIFT network, the number
of clusters to use and the number of hidden units and type
of activation function to use in the neural classifier network.
We used 50 units and the logistic function with a steepness
of 0.75 in the hidden layer of the neural-SIFT network and
the linear activation function with a steepness of 0.25 in
the output layer. Two sizes of the visual vocabulary were
considered, being 100 and 300 clusters. Using 100 clusters
setting ζ to 10 provided the best results. In this setting the
neural classifier features 75 hidden units using the hyperbolic
tangent activation function with a steepness of 0.10. For
the 300 clusters setting ζ was set to 12, using 75 hidden
units with the hyperbolic tangent activation function with a
steepness of 0.25.

For each of the experiments presented in this paper 10-
fold cross-validation is applied to more accurately determine
the optimal parameters and to predict the accuracy of the
system.

B. Datasets
1) Caltech-101: The Caltech-101 dataset consists of

images of 101 object classes. Each class contains about 40-
800 images, where most of the classes contain around 50.
The resolution of each image varies around 300×200 pixels
and can be in both portrait or landscape mode. Of all images
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Fig. 2. Example error (a) and accuracy (b) curve for the first iteration
of full backpropagation for a single fold using 100 clusters (Caltech-101
dataset). The black (dotted), red (dashed) and blue (solid) curves represent
the training, validation and test set, respectively.

most have little or no clutter, objects tend to be centered
in each image and objects are presented in a stereotypical
pose. For the experiments 10 classes were selected. These
include: airplanes, cameras, car sides, cellphones, cups,
helicopters, motorbikes, scissors, umbrellas and watches.
Example images are shown in the left column of Fig. 1. For
evaluating the different methods 15 training, 15 validation
and 15 test images were used for each class.

2) Corel-1k: The Corel-1k dataset consists of 1000
images sorted in 10 classes, with 100 images per class.
The classes are: African people, beaches, busses, dinosaurs,
elephants, flowers, food, horses, monuments and mountains.
Example images are shown in the right column of Fig. 1.
The resolution of the images are all 384×256 pixels, either
in portrait or in landscape mode. All classes of the Corel-1k
dataset were selected for the experiments. From the available
100 images per class 60 were used for training, 20 for
validation and 20 for testing.

C. Results on full-backpropagation
After each individual stage of the system is trained

the system reaches a point where traditional training can-
not push the performance any further. At this point full
backpropagation is applied. First, a single iteration of full
backpropagation is considered, which can consist of multiple
training epochs. An example error curve for the training,
validation and test set for a single fold in the 100 clusters
setting is shown in Figure 2. At first both validation and test
error go down together with the train error, which coincides
with an increase in both validation and test accuracy. After
around epoch 30 overfitting starts to occur and both the
validation and test set error go up.

For all folds, on average the train, validation and test set
errors went down and accuracy went up for both datasets.
After one single iteration test accuracy went up by 1.50% for
the Caltech-101 dataset and 1.74% for the Corel-1k dataset.
When using 300 clusters the test accuracy for the Caltech-
101 dataset went up from 68.53% to 69.80% (+1.37%).
For the Corel-1k dataset accuracy went up from 85.10% to
86.70% (+1.60%).

After one single iteration regular training schemes cannot
improve performance any further. As described earlier ad-
ditional iterations can be used to possibly push the system
even further. The procedure involves updating the current
clustering and the neural classifier based on the improved
neural-SIFT network. When these are retrained a second
iteration of full backpropagation can begin, this cycle can be



0 2 4 6 8 10

0.5

1

Iteration

E
rr

or

(a)

0 2 4 6 8 10
0.6

0.7

0.8

0.9

Iteration

A
cc

ur
ac

y

(b)

0 2 4 6 8 10

0.2

0.4

0.6

Iteration

E
rr

or

(c)

0 2 4 6 8 10
0.8

0.85

0.9

0.95

Iteration

A
cc

ur
ac

y

(d)

0 2 4 6 8 10

0.5

1

Iteration

E
rr

or

(e)

0 2 4 6 8 10

0.7

0.8

0.9

Iteration

A
cc

ur
ac

y

(f)

0 2 4 6 8 10

0.2

0.4

0.6

Iteration

E
rr

or

(g)

0 2 4 6 8 10

0.85

0.9

0.95

Iteration

A
cc

ur
ac

y

(h)

Fig. 3. Full backpropagation training progress averaged over 10 folds. For the k = 100 clusters setting (a) and (b) show the training progress for the
Caltech-101 dataset, the progress for the Corel-1k dataset is shown in (c) and (d). For k = 300 clusters (e) and (f) show the training progress for the
Caltech-101 dataset, (g) and (h) show the progress for the Corel-1k dataset. Vertical updates indicate the error and accuracy after retraining the clusters
and the neural classifier. The black (dotted), red (dashed) and blue (solid) curves represent the training, validation and test set, respectively.

repeated over and over again, until no further improvement
is observed. For each experiment involving full backpropa-
gation a maximum of 10 iterations is used. This proved to
be a sufficient number of iterations for the error to stabilize
or to see overfitting occur.

The development of the errors and accuracies over mul-
tiple iterations for both datasets using 100 clusters is shown
in Figure 3 (a-d). For the Caltech-101 dataset the validation
error went down each iteration, but went up or down during
retraining the clusters and classifier (indicated by the vertical
updates at each iteration point). On average the lowest
validation error was reached at iteration 3, before retraining.
From iteration 4 onwards the validation error stabilized
and for most folds no further training was possible while
not letting the validation error increase. For the Corel-1k
dataset on average the lowest validation error was observed
at iteration 2, before retraining. After that point retraining
most of the time lead to an increase of validation error.
The training error was still going down which indicates
overfitting on the training set. Figure 3 (e-h) shows the
development of the errors and accuracies over multiple
iterations in a similar way, but with using 300 clusters
instead.

The exact figures for all settings before applying full
backpropagation and at the point where the validation error
was the lowest are shown in Table I. The performance of
using the improved neural-SIFT descriptor is compared with
the SIFT descriptor there as well. Before full backpropa-
gation the SIFT descriptor obtained higher accuracy rates
for both datasets in the 100 clusters setting and achieved
higher accuracy for the Corel-1k dataset for the 300 cluster
setting. Only the Caltech-101 dataset with 300 clusters
showed a slightly better performing neural-SIFT descriptor.
After applying multiple iterations of full backpropagation,
however, the improved neural-SIFT descriptor takes over and
obtains better performance for all settings.

For the Caltech-101 dataset increases of +3.33% and
+4.87% were realized for the 100 and 300 clusters setting,

respectively. A student t-test was conducted to compare the
two descriptors. For the 100 clusters setting there was a
significant difference in the scores for the SIFT descriptor
(M = 62.80, SEM = 0.95) and the neural-SIFT descriptor
(M = 66.13, SEM = 1.24) conditions; t(18) = 2.13, p =
0.047. Also the 300 clusters setting showed a significant
difference between the SIFT (M = 65.33, SEM = 1.30)
and the neural-SIFT descriptor (M = 70.20, SEM = 0.57)
conditions; t(18) = 3.43, p = 0.003.

For the Corel-1k dataset increases of +3.00% and
+0.60% were realized. The student t-test could not be used
here because we observed that the outcomes do not follow a
normal distribution, so the Binomial test was used instead.
The results indicated that for both the 100 and 300 clusters
setting there were 8 wins, 2 losses. The cumulative Binomial
test then gives P (X ≥ 8 | N = 10) = 0.054, which is
almost significant at the p = 0.05 level.

D. Results on random initialization
All settings used for this system (termed neural-

RANDOM) are identical to the neural-SIFT based system.
The only aspect that changed is the initialization of the
neural-SIFT network: now it is not pretrained on SIFT de-
scriptor output. The weights of this network were randomly
initialized in a broad range, namely [−0.5,+0.5].

The results are summarized in Table I. Before full back-
propagation training the neural-RANDOM based system
performed less well than the SIFT and original neural-SIFT
based systems. After applying full backpropagation training
performance increased for each setting. In three out of four
settings the neural-RANDOM descriptor still performed less
well than the SIFT descriptor. Only for the Corel-1k dataset
using 100 clusters the neural-RANDOM descriptor showed
a higher recognition accuracy (+0.45%). Compared to the
improved neural-SIFT descriptor the neural-RANDOM de-
scriptor falls behind. The difference is much larger for the
Caltech-101 dataset than for the Corel-1k dataset. Adding
more training images seems to have a positive effect on



TABLE I. AVERAGE CLASSIFICATION ACCURACY OF THE TEST SET OVER 10 FOLDS USING THE NEURAL CLASSIFIER WITH EITHER THE SIFT
DESCRIPTOR, THE ORIGINAL OR IMPROVED NEURAL-SIFT NETWORK, THE ORIGINAL OR IMPROVED RANDOMLY INITIALIZED NEURAL-RANDOM

NETWORK OR THE SVM CLASSIFIER WITH THE ORIGINAL OR IMPROVED NEURAL-SIFT NETWORK. THE STANDARD ERROR OF THE MEAN (SEM) IS
SHOWN FOR THE SIFT AND IMPROVED NEURAL-SIFT DESCRIPTOR WITH THE NEURAL CLASSIFIER. FOR THE NEURAL CLASSIFIER THE NUMBERS IN

PARENTHESES BELOW THE PERCENTAGES SHOW THE DIFFERENCE IN PERFORMANCE WHEN COMPARED TO THE SIFT DESCRIPTOR. FOR THE SVM
THIS IS SHOWN IN COMPARISON TO USING THE ORIGINAL NEURAL-SIFT FEATURE DESCRIPTOR.

100 clusters

SIFT Neural-SIFT Neural-RANDOM SVM classifier + neural-SIFT

descriptor (SEM) Original Improved (SEM) Original Improved Original Improved

Caltech-101 62.80% (0.95) 62.47% 66.13% (1.24)* 50.33% 58.73% 75.90% 77.08%

(−0.33%) (+3.33%) (−12.47%) (−4.07%) (+1.18%)

Corel-1k 83.15% (2.61) 81.65% 86.15% (3.18) 78.10% 83.60% 90.10% 90.55%

(−1.50%) (+3.00%) (−5.05%) (+0.45%) (+0.45%)

300 clusters

SIFT Neural-SIFT Neural-RANDOM SVM classifier + neural-SIFT

descriptor (SEM) Original Improved (SEM) Original Improved Original Improved

Caltech-101 65.33% (1.30) 68.53% 70.20% (0.57)** 54.59% 61.80% 79.17% 79.72%

(+3.20%) (+4.87%) (−10.74%) (−3.53%) (+0.55%)

Corel-1k 86.25% (2.61) 85.10% 86.85% (2.98) 76.90% 84.70% 90.25% 91.40%

(−1.15%) (+0.60%) (−9.35%) (−1.55%) (+1.15%)

* The mean difference is significant at the 0.05 level

** The mean difference is significant at the 0.005 level

the learning capabilities of the system through full back-
propagation. Although a properly initialized local image
descriptor neural network gives a head start performance-
wise, if there are enough train images available the system
can recover quite well using full backpropagation. In other
words, it can come up with its own representation of what a
good image feature looks like. For the Corel-1k dataset with
100 clusters, for example, it even outperformed the SIFT
descriptor without any prior knowledge on how to describe
local parts of an image.

E. Results on generalization
In order to test generalizability of the improved neural-

SIFT descriptor, performance is measured with a different
classifier: a support vector machine (SVM). This classifier
is trained using the original neural-SIFT network and the
corresponding clusters in the first setting and using the im-
proved neural-SIFT network and the corresponding clusters
in the second. This experiment is applied for both 100 and
300 clusters.

The radial basis function (RBF) is used as kernel function
for the SVM. A grid-search algorithm is applied to fine-
tune the C and γ parameters. First a coarse grid search
is used with C-values of 2−5, 2−4, ..., 215 and γ-values of
2−15, 2−14, ..., 23. The best performing parameters, C∗ and
γ∗, are used as the starting point for a fine grid-search. Here
C ranges from 0.5C∗ to 2.0C∗ and γ ranges from 0.5γ∗ to
2.0γ∗ where each range is divided in 20 equal steps. The
best parameters of the fine grid-search are used to test the
performance of the system.

The results for this experiment are shown in Table I.
When using the original neural-SIFT descriptor the SVM
performed better than the neural classifier with the original
neural-SIFT network for each number of clusters and type
of dataset. Especially for the Caltech-101 dataset the SVM
performed a lot better: +13.43% for the 100 clusters setting
and +10.64% for using 300 clusters. When training the

SVM with the improved neural-SIFT network instead the
performance for each setting improved further. The improved
neural-SIFT descriptor not only led to an improvement for
the neural classifier by which it was trained, but it also led to
an improvement when using a completely different classifier.
A classifier which has little or no structural resemblance to
a neural network. Although the performance increases are
small, this shows that the full backpropagation system has
the capability to improve a feature descriptor which can then
be used in other settings than the one in which it was trained.

V. CONCLUSIONS

In this paper a deep neural network training framework
was introduced which propagates the classification error
through the entire pipeline all the way back to the feature
extraction stage to learn to extract ‘better’ features than the
initial local image descriptor. A neural network was trained
on the output of the SIFT descriptor and by applying the
proposed full backpropagation training scheme the system
was able to achieve higher recognition accuracy in each
single setting. Performance increases between 0.60% and
4.87% were realized when compared to the SIFT descriptor.

The influence of initializing the feature extracting neural
network on an existing local image descriptor was examined
by using a randomly initialized network instead. The system
showed a much lower performance initially, but was able
to narrow the performance-gap quite a bit after applying
full backpropagation training. This gap was a lot smaller
for the Corel-1k dataset where a lot more training images
were available. This shows that when a system has many
training samples available it can figure out by itself, without
any prior knowledge on the subject, how a distinctive image
descriptor should look like. Still, the results also showed that
pretraining on SIFT outputs led to better final recognition
accuracies than initializing the feature extraction neural
networks completely randomly.

The image descriptor was improved in one specific



context, with the bag of visual words approach and a neural
network classifier. An SVM classifier was used to account
for context and in each setting the performance increased
when using the improved neural-SIFT descriptor instead of
the original. However, these improvements were small and
were only achieved in one other context. Other contexts
should be tested to get a better view on the generalizability
of the improved descriptor.

As future work, other feature descriptors, or combina-
tions of them, can be applied. In fact, any type of feature
descriptor which takes a range of pixels as input can be
used in this framework and it would be interesting to
see what performance increases are possible using other
feature descriptors. One point of improvement lies in the
clustering. During retraining of the clusters and the classifier
the validation errors regularly went up. This could be due
to the fact that the clustering is performed by the k-means
algorithm, which applies a hard assignment scheme. The
error propagation through the clustering makes use of a soft
assignment scheme. This mismatch can be solved by using
a different clustering approach which also applies a soft
assignment scheme. One example of such an approach is
Gaussian mixture models, although this approach is more
computationally expensive. Finally, possible performance
increases can be achieved by implementing spatial pyramids
or by applying other classification systems.
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