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Abstract— The temporal evolution of nearshore sandbars
(alongshore ridges of sand fringing coasts in water depths less
than 10 m and of paramount importance for coastal safety) is
commonly predicted using process-based models. These models
are autoregressive and require offshore wave characteristics
as input, properties that find their neural network equivalent
in the NARX (Nonlinear Auto-Regressive model with eXoge-
nous input) architecture. Earlier literature results suggest that
the evolution of sandbars depends nonlinearly on the wave
forcing and that the sandbar position at a specific moment
contains ‘memory’, that is, time-series of sandbar positions
show dependencies spanning relatively long time periods. Using
observations of an outer sandbar collected daily for about
3.5 years at the double-barred Surfers Paradise, Gold Coast,
Australia we find, however, little difference in performance
between a NARX, an autoregressive multilayer perceptron
(without long-term dependencies), and a linear NARX. It is
uncertain whether these results generalize to the inner Gold
Coast bar or to other field sites.

I. INTRODUCTION

The study of the coastal zone and the processes that lead
to the morphological behavior of sandbars are important
issues in coastal management. As the coast is under constant
exposure to continuous incoming wave attack, nearshore
sandbars are the most important factors responsible for the
dissipation of wave energy, protecting the shoreline from
coastal erosion. The prediction of the evolution of these
morphological features is required to plan and evaluate
coastal defenses, and to determine the effect of changes in
the current conditions. Field data are essential for studying
the evolution of nearshore sandbars and the calibration and
validation of constructed models. Extensive data are available
in the Argus program [1], providing hourly video images
of the nearshore zone together with hydrodynamic data, for
several locations worldwide.

Models of the nearshore constructed using knowledge of
physical processes are common in physical geography, civil
engineering and coastal oceanography [2]. As these process-
based models come with their own practical problems and
limitations, other classes of models are applied in some
situations. An important class of models is the class of data-
driven models. In contrast to process-based models, data-
driven models need no process knowledge to operate, but are
constructed by establishing statistical relations in field data.
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Neural networks, becoming increasingly popular in many
sciences, are members of the class of data-driven models.
Most process-based models describing the behavior of the
nearshore morphology are autoregressive, a property that
finds its neural network equivalent in the NARX (Nonlinear
Auto-Regressive model with eXogenous input) neural net-
work architecture.

The behavior of sandbars in terms of the cross-shore
position has been shown to depend nonlinearly on the factors
forcing the migration of the sandbar (for instance, [3]).
Furthermore, ‘memory’ is sometimes assumed to be present
in the time-series of cross-shore sandbar positions, meaning
dependencies in the position of the sandbar spanning longer
time periods. An example of modeling temporal dependen-
cies is [4], in which the weighted hydrodynamic forcings
over several days are included in a variable to provide for a
measure of relaxation time in morphology.

The NARX neural network architecture is known to be
capable of representing nonlinear dynamics as well as long-
term dependencies in time-series data [5]. The presence of
memory and nonlinearity in the time-series of cross-shore
positions of sandbars are studied here to identify if these
claims justify the application of a recurrent neural network
such as the NARX neural network architecture.

II. OBSERVATIONS

The sandbar data set used in the present work was acquired
with an Argus coastal imaging station located at the double-
barred Surfers Paradise, northern Gold Coast, Queensland,
Australia [6]. The station consists of four cameras pointed
obliquely along the beach (Fig. 1(a)), providing 180◦ unin-
terrupted coverage of the beach and nearshore zone. Each
daylight hour, the cameras acquire a time-exposure image
(Fig. 1(a)), created by averaging over 600 consecutive images
(snapshots) collected at 1 Hz. This will remove moving
objects such as ships, vehicles and people. Furthermore,
the time-exposure images reveal one or more smooth white
bands of breaking waves, which serve as a reasonable esti-
mate for the submerged sandbars [7], [8]. All four images
can be rectified [9] and merged to yield a single planview
image (e.g., Fig. 1(b)). As detailed in [8], the crest lines of
the inner and outer bar can be extracted from a planview
image by the automated alongshore tracking of the intensity
maxima across each bar (Fig. 1(c)). The alongshore average
of a a crest line, in the present work based on planview
images with an alongshore extent of 1800 m, is referred to
in the following as the barcrest position (X̄). The actual (in
situ) bar position, however, is known to deviate from the
position of the breaking waves by a factor O(10 m), and



(a) Time-exposure Argus images of all cameras. The high-intensity bands in each image are due to persistent wave breaking on the inner and outer bar.

(b) Merged plan view image

(c) Tracked barlines in plan view

Fig. 1. Argus camera images, merged plan view, and tracked barlines

varies in time and alongshore distance with the wave height,
the water level, and the bathymetry [8].

Given the availability and quality of the available image
data set, a period of 1388 days was selected from September
20, 2000 to July 9, 2004 to construct the time-series of
alongshore average bar positions. To eliminate the time-
varying nature of the difference between the measured and
the actual bar position caused by the semi-diurnal tide, the
data set was reduced to a single observation each day, at
the lowest tide of that day (when the breaking patterns are
most pronounced in the images). During the selected period,
three different bars can be distinguished (Fig. 2(a)): (1) outer
bar existing at the start of the period, but moving seaward,
degenerating and finally disappearing in April 2001, (2) inner
bar existing at the start of the period, and becoming the outer
bar at the time the former outer bar degenerates, (3) inner bar
which forms after the degeneration of the first bar. For several
days it was not possible to compute accurate bar positions
due to poor image quality (fog or rain droplets on the camera
lens) or conditions when waves were too low to break,
leaving a total of 1106 observations over this period. To
create a continuous time-series data set, the gaps were filled
with observations from the last breaking-based observation,
assuming that bar migration is insignificant under low-energy
conditions. The resulting data set consists of the alongshore
average bar position on each day t: X̄t (note: superscript

will be used for time indexing).
The predominant exogenous inputs for driving sandbar

variability in process-based models are the offshore waves,
which are represented by their root-mean-square wave height
(Hrms), peak wave period (Tpeak) and wave direction rela-
tive to the shore normal (θ). To reduce the number of inputs
for the neural network, these variables can be combined
(using shallow-water linear wave theory) into the wave height
at breaking (Hb)

Hb =
(

γ

g

) 1
5 [

H2
rms · cg · cos(θ)

] 2
5 , (1)

where cg is the offshore group velocity, g the gravitational
acceleration, and γ the breaker parameter. Since the variables
are meant for use with a neural network instead of a
process-based model, the exact scale of Hb is not important.
Therefore any constant in (1) can be left out. Furthermore,
according to linear wave theory it holds that cg ∝ Tpeak.
Leaving out the constants and replacing cg by Tpeak results
in a simpler formula to compute the variable proportional to
Hb, which we shall call Hbs

Hbs = H2
rms · Tpeak · cos(θ). (2)

The variables Hrms and Tpeak were obtained hourly from
the Gold Coast waverider buoy, located approximately 2 km
offshore of the study area, in 16 m water depth. Directional
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(a) X̄ for the different bars: dashed (1), gray (2) and black (3)
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(b) Hydrodynamic data

Fig. 2. Overview of the variables in the data set

information (θ) was collected by the Brisbane waverider
buoy located some 10 km offshore in 70 m water depth,
about 100 km north of the study area. Because the wave
variables don’t change very much on a daily timescale, the
values at the same time as the (low-tide) collection of the
image data were used.

As pointed above, another possible factor in determining
the actual, and especially the observed bar migration, is the
tide (ztide). The value of the tide used here is the astronom-
ical tide which is known to deviate from the actual water
level due to atmospheric conditions, such as air pressure and
temperature, and extreme weather conditions causing a storm
surge. Because no data on the atmospheric conditions and the
weather were available, the predicted astronomical tide was
used for an estimate of the actual water level. The time-series
of the hydrodynamic data are depicted in Fig. 2(b).

For application in neural networks, the alongshore average
bar positions were scaled between 0 and 1, while Hbs was
scaled between 0 and 1, and ztide between -1 and 1.

III. MODELS

A. Autoregressive Models

The presently most common approach to the modeling of
nearshore bathymetry is by means of process-based models
[2]. A formal description of these models can be given in
terms of inputs, outputs, states, functions and parameters. In
discrete time, the internal state of the model at a certain time
t, called the system state (�U t), depends on the states of the
model in the past, the external forcing (�It) to the model at
time t, and the external forcing in the past

�U t = M
(

�U t−1, . . . , �U t−M ; �It, �It−1, . . . , �It−N |�Θ
)

, (3)

where M represents the model’s process knowledge, �Θ the
adjustable model parameters, M the autoregressive order of
the system state, and N the order of the external forcings.
The parameters in �Θ must be identified by calibration from
observed model behavior or the literature. A model in
which the output is fed back into the model, together with
external forcing, is known as an Auto-Regressive model with
eXogenous Input (ARX). In case the transfer functions of the
model are nonlinear, it is called a Nonlinear Auto-Regressive
model with eXogenous Input (NARX).

Instead of incorporating all forms of process knowledge
in a model, a statistical model can be constructed from
available data. Various methods exist to build simple or more
complicated statistical models, but because of the supposed
nonlinear nature of the nearshore dynamics such a model
should preferably be nonlinear. Several feedforward neu-
ral network architectures, using nonlinear transfer functions
show such nonlinear behavior, as well as recurrent neural
networks [10]. Replacing the process knowledge (M) in (3)
by a neural network (N ) and the adjustable model parameters
(�Θ) by the weight matrix (W) of the neural network, (3) can
be written as

�U t = N
(

�U t−1, . . . , �U t−M ; �It, �It−1, . . . , �It−N |W
)

. (4)

The transfer function (N ) is now a neural network, and the
weight matrix (W) is to be determined by learning from
the data, as is the case for data-driven models. This learning
involves the minimization of the squared differences between
the observations (‘targets’) and neural network output.



B. NARX Neural Network Architecture

A multilayer perceptron (MLP) [11] is an appropriate
candidate neural network architecture to replace the process-
based model. Each time step t the set of external inputs,
which are defined for t, . . . , t−N , is provided to the network,
together with the set of outputs of the network from previous
steps: t − 1, . . . , t− M . The alongshore average position of
the sandbar is the value that is to be predicted, so the output
of the network (�U t

out) is

�U t
out =

(
X̄t

)
, (5)

where X̄t is the observed alongshore average bar position at
time t. The external inputs to the network, being the factors
that force the bar migration, are the hydrodynamic data

�It =
(
Ht

bs
, zt

tide

)
. (6)

While backpropagation [11] is a commonly used technique
for training feedforward neural networks such as MLPs,
several interpretations exist for the application of this method
in recurrent neural networks. RealTime Recurrent Learning
(RTRL) [12] and BackPropagation Through Time (BPTT)
[11] are well-known training algorithms. Whereas RTRL is
of more theoretical interest, BPTT is the algorithm described
by [5] to train the NARX neural network architecture.
Using BPTT to train a NARX neural network, the recurrent
connections are unfolded in time, and the resulting network
is treated as an MLP with injected errors. Instead of unfold-
ing the temporal operation of a network into a multilayer
feedforward network that grows by one layer each step,
as is common practice in BPTT [11], the entire network
is unfolded at the recurrent connections. In the unfolded
network, the recurrent connections appear as jump-ahead
connections, providing for a shorter path for backpropagating
the error through the network.

Because the weight changes are accumulated during the
presentation of a certain number of samples and applied
after the computation of all errors in the unfolded network,
this approach is called batch-wise backpropagation. Since the
time-series data of alongshore average positions of the sand-
bars are not naturally segmented into independent batches,
the BPTT algorithm as described above cannot be used on
these data. [12] provide a solution to this problem, using a
modified BPTT algorithm that can handle time-series of any
size, dividing it into a number of batches with arbitrary size
h. The resulting algorithm, called BPTT(h; h′), is exactly the
same as batch-wise backpropagation through time in case h
is chosen to equal h′.

After presenting one batch to the network, the error is
backpropagated through the unfolded network. In the output
units of the recurrent network, the local error is computed and
added to the backpropagated value from the subsequent input
unit. As the error in the present time step is reduced while
taking into account the errors made in the future, the NARX
neural network is able to learn long-term dependencies in the
data.

It is possible to disregard these long-term dependencies
when the error is not backpropagated over the recurrent
connections. In such a network the errors made in the future
are not considered in the computation of the present weight
updates. This autoregressive MLP still uses the previous
predicted outputs as input, but does not backpropagate any
error information through the recurrent connections. When
using this modified learning algorithm, the network will not
be able to learn any long-term dependencies in the data.

C. Linear NARX Neural Networks

Even the complex NARX architecture can be reduced to
a very simple recurrent linear network, using only a few
units and linear functions. The linear network used in the
experiments is a NARX neural network with two input units,
one for Hbs and one for ztide, an additional recurrent input
for the previous predicted X̄ , and one output unit. All units
use linear squashing functions. This network does not contain
any hidden layers, yielding a linear equation for the trained
network

X̄t = p0 + p1 · Ht
bs

+ p2 · zt
tide + p3 · X̄t−1, (7)

where p0 denotes the bias value of the output unit and
p1 . . . p3 the values of the weights from the input units
to the output unit. This network can be used to test if
the dependence of the bar migration on the hydrodynamic
forcings is nonlinear, in which case the linear network should
perform very bad. However, if the processes that force the
migration of the sandbar can be learned by this simple
network, it yields a very simple linear model in the form
of (7).

IV. EXPERIMENTS

A. A Preliminary Analysis

To gain more insight in the processes that force the migra-
tion of the sandbar and the timescale on which they operate,
a simple linear analysis is performed first. A reasonable
measure of the contribution of the different variables to the
bar migration, is the proportion of explained variance of
these variables in the bar migration according to a linear
regression model, as shown in Fig. 3. The difference in days
between the time of the measurement of the variables and
the observed bar migration is on the horizontal axis, whereas
the proportion of explained variance (R2) in bar migration
(∆X̄) by the hydrodynamic variables is on the vertical axis,
together with the autoregressive proportion of the variance
in ∆X̄ .

As becomes clear from Fig. 3 there is a striking difference
between the two bars. In the outer bar more than thirty
percent of the variance in observed bar migration is explained
by the variable Hbs with a linear model, whereas this
value is well below ten percent for the inner bar. The tides
however, contribute not much to the variance in observed
bar migration; the tides measured at the same moment as
the observation of the bar position explain a value close
to zero of the bar migration. The timescale on which the
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Fig. 3. Proportion of explained variance in bar migration over several days for the inner and outer bar

hydrodynamic variables cause the sandbar migration, as well
as the timescale of the autocorrelation in bar migration is
very small. According to this linear model there will be little
or no long-term dependencies in the data.

Because in this linear analysis the proportion of explained
variance in bar migration by Hbs is much larger for the outer
than for the inner bar, it is likely that a neural network can
learn to capture the behavior of the outer bar better. As such,
all further experiments will be performed on the outer bar
only.

Linear regression can also be applied to assess the varia-
tion between different parts of the data. Although not shown
here in detail, the proportion of explained variance in bar
migration of the outer bar by Hbs explains as much as
forty percent of the observed outer bar migration in the first
halve of the data set, whereas this proportion is only twenty
percent in the second halve. Being just a linear model, the full
dynamics of the interactions between the bar migration and
the hydrodynamics is not covered. It is however an indication
that there can be a lot of variation between different parts
of the data set, possibly resulting in bad generalization when
using neural networks.

B. Batch Size

As noted in section III-B, the time-series data of the along-
shore average sandbar positions are not naturally segmented
into independent batches, but the data can be arbitrary
divided into batches of a certain size. It is however important
to notice that the NARX neural network will not be able
to learn long-term dependencies spanning different batches,
so the batch size has to be larger than the longest-term
dependency in the data. From Fig. 3 it becomes clear that the
longest-term dependency according to a linear model will not
be much larger than three or four days, but it cannot be used
to determine what this value should be for nonlinear models.
While the computation time for the data set decreases as the
batch size grows larger, but the learning speed decreases as
well for larger batch sizes, an optimal batch size has to be
found empirically.

An experiment on a small part of the data (200 days)
was performed to investigate how the learn speed changes
with the batch size. Fig. 4 shows the course of the root-
mean-square (RMS) error during learning, averaged over the

training of thirty NARX neural networks initialized with
different random weights, for different batch sizes. Whereas
these networks had one hidden layer containing three units,
different numbers of hidden units and different sizes of the
total data set yielded similar results. The smallest batch sizes
with the largest learning speed are found between four and
thirty, so anywhere between these values is an appropriate
choice for the batch size.

As becomes clear from Fig. 4, training the network takes
an enormous amount of epochs, generally larger than two
million. To train the network at a higher speed, a momentum
factor can be used. This increased the learning speed with a
factor ten, but resulted in less accuracy. Another method to
speed up the learning by reducing the possibility to oscillate,
is to fix the bias after a number of epochs, while the weights
continue to be trained. This did indeed speed up the learning,
but also reduced the learning capacity of the network. Other
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Fig. 4. Decrease in RMS error for different batch sizes
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Fig. 5. Model output from NARX neural network versus observed positions for different sets
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Fig. 6. Model output from linear and nonlinear models versus observed positions for different sets

learning methods using second or higher order derivatives or
approximates, such as quasi-Newton methods, can improve
learning speed, but also decrease the learning capacity of
recurrent architectures because of fast-vanishing gradient
information over recurrent connections. Since the ability of
the NARX neural network to learn long-term dependencies
is studied, we will only use gradient descent based on first-
order derivative.

C. NARX Results

In the next experiment we measure the performance of a
NARX neural network to predict the migration of a sandbar
given the hydrodynamic forcings. The network has two input
units, one for Hbs and one for ztide, an additional recurrent
input for the previous predicted X̄ , one output unit, and two
hidden layers with eight units each (other configurations with
one or two hidden layers and up to eight units in each hidden
layer gave essentially the same results). The units in the input
and output layer use linear squashing functions whereas the
units in the hidden layers use sigmoid squashing functions.
The network was trained with BPTT using gradient descent,
for a number of epochs on one part of the data set; the
training set, and subsequently tested on another part of the
data set; the validation set. When the error in the validation

set stopped to decrease, the network was supposed to start
overfitting and the training was stopped. This process was
repeated for fifty networks with different initialized weights.

Fig. 5 shows the observed bar positions together with the
model output. The RMS error on the training set is 17 m, on
the validation set 14 m, and on the test set 15 m. Note that
the error on the training set is larger than on the validation
and test sets, because position is ‘clamped’ only at the initial
value and the training set is much larger than the validation
and test sets.

D. Linear versus Nonlinear Networks

It is suggested in the literature that the interaction between
the hydrodynamics and the morphology is highly nonlinear.
To test this claim, the results of linear and nonlinear models
can be compared to each other. If the aforementioned interac-
tion is in itself nonlinear, a linear model has more difficulty
to model the system than a nonlinear model. The linear and
nonlinear models used here are two NARX neural networks,
the former using linear squashing functions in all units, and
the latter using linear functions in the input and output layers,
but sigmoid functions in the hidden layers. The structure of
the linear network is as described in section III-C, and that
of the nonlinear network as described in section IV-C. To
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obtain comparable results, both architectures were trained in
the same fashion as the networks in section IV-C. The results
of the model outputs together with the observed outer bar
positions are depicted in Fig. 6.

As becomes clear from Fig. 6, there is not much difference
between the results of the linear and the nonlinear networks.
Both achieved a RMS error of 17 m on the training set,
14 m on the validation set and 15 m on the test set, with no
significant difference in the 99 percent confidence interval.

E. NARX Neural Network versus Autoregressive MLP

The last experiment is performed to analyze the difference
in learning between the NARX neural network architecture,
and an autoregressive MLP as described in section III-B.
The MLP is not capable of learning long-term dependencies
in the data because the error is not backpropagated over
the recurrent connection, in contrast to the NARX neural
network. Both networks in this experiment use one hidden
layer with five units and all other training parameters are the
same. Training is performed in the same fashion as in the
previous sections.

As in the previous experiment, there was no significant
difference in performance between the two architectures on
the training, the validation or the test set. This suggests that
there are no important long-term dependencies in the time-
series of alongshore average sandbar positions, or that the
difference between the sets does not allow the networks to
learn them, by complicating the learning process too much.

V. CONCLUSION AND DISCUSSION

The nearshore morphology at Gold Coast is a highly
dynamic system that is very responsive to the hydrodynamic
forcing. This behavior is reflected in the observed cross-
shore positions of the sandbars. The preliminary analysis
showed that the behavior of the sandbars in terms of linear
dependence on the hydrodynamic forcings can be different
for separate parts of the data set. One of the causes that might
partially be responsible for this variation, is the small part of
the bar (1.8 km) that was tracked from the total part of the
bar (> 4 km) available on the images.

Although all neural network architectures and training
algorithms used in the experiments were able to capture some
of the dynamics of the outer bar, generalization proved to
be difficult. All models learned to predict approximately the
same course of the bar positions, but the error remained quite
large on all parts of the data set. However, the predicted

positions of the models never showed any values beyond the
bar zone (between 0 and 250 m) while this was not imposed
by the linear nature of the output neurons.

The method used in the experiments in which training
was terminated when the error in the validation set stopped
to decrease, resulted in approximately equal errors for the
training, test and validation set. Training the networks on
a smaller part of the data set (< 250 days) until the error
on the training set did not decrease any further, resulted in
much better performance on the training set, but decreased
performance on other parts of the data. In Fig. 7 the predicted
alongshore average position of the outer bar for a small
part of the data set is depicted for several models. The
generalized model, which was trained on another part of the
data, performed rather poorly with a RMS error of 25 m,
while the overfitted model, which was trained on the same
data as shown in this figure, did much better with RMS errors
of approximately 10 m.

A possible solution for the problem of bad generalization
is to train a number of networks on different parts of the
data set, and use each of the networks’ output with a certain
weight dependent on an analysis of the data set, comparing it
with other data sets which were learned by the networks, to
compute a weighted prediction. As becomes clear from Fig. 7
this would probably result in better performance, but is might
also be the case that the dynamic character of the Gold Coast
data does not even allow for such a generalization.

While the difference between the results of the models
using several architectures and training algorithms is small
and the experiments concern only one bar, the answer to
the question whether the supposed nonlinearity and long-
term dependencies in the Gold Coast data require a NARX
neural network to capture the dynamics of the cross-shore
sandbar migration remains uncertain. In this project, more
simple models, such as the linear and the autoregressive MLP
performed as well or sometimes even better. Although this
might suggest a more complex neural network such as the
NARX architecture is not required to capture the dynamics of
the nearshore sandbars, other bars and other locations show
possible less linear behavior. For example, the inner bar,
which was not studied here, shows less direct response to the
factors forcing the migration than the outer bar (see Fig. 2),
indicating that its behavior might be difficult to capture with
a simple model.

The neural networks had to be trained for an enormous



amount of epochs (> 2 · 106) before reasonably good results
were obtained. The gradient descent method used in the
experiments is known to converge slowly. As mentioned
before, other methods using second or higher order deriva-
tives or approximates, can dramatically improve the learning
speed, but also decrease the learning capacity of recurrent
architectures. Feedforward networks suffer less from the
problem of vanishing gradients because they don’t employ
recurrent connections. Considering the performance of the
network architectures and algorithms in the experiments,
simple models are better than complex models. Further
research has to demonstrate if the performance of data-
driven models, such as neural networks, can be improved
by architectures that are nonlinear and can learn long-term
dependencies.

ACKNOWLEDGMENTS

This work was supported by the Netherlands Organization
for Scientific Research (NWO) under contract 864.04.007.

REFERENCES

[1] S. G. J. Aarninkhof and R. A. Holman, “Monitoring the nearshore
with video,” Backscatter, vol. 10, pp. 8–11, 1999.

[2] J. A. Roelvink and I. Brøker, “Cross-shore profile models,” Coastal
Engineering, vol. 21, pp. 163–191, 1993.

[3] N. G. Plant, R. A. Holman, M. H. Freilich, and W. A. Birkemeier, “A
simple model for interannual sandbar behavior,” Journal of Geophys-
ical Research, vol. 104, pp. 15,755–15,776, 1999.

[4] L. D. Wright, S. May, A. D. Short, and M. Green, “Beach and surf zone
equilibria and response times,” in Proceedings of the 19th International
Conference on Coastal Engineering, 1985, pp. 2150–2164.

[5] T. Lin, B. G. Horne, P. Tiño, and C. L. Giles, “Learning long-term
dependencies in NARX recurrent neural networks,” IEEE Transactions
on Neural Networks, vol. 7, no. 6, pp. 1329–1338, November 1996.

[6] I. L. Turner, S. G. J. Aarninkhof, T. D. T. Dronkers, and J. McGrath,
“CZM applications of Argus coastal imaging at the Gold Coast,
Australia,” Journal of Coastal Research, vol. 20, pp. 739–752, 2004.

[7] T. C. Lippmann and R. A. Holman, “Quantification of sand bar
morphology: a video technique based on wave dissipation,” Journal
of Geophysical Research, vol. 94(C1), pp. 995–1011, 1989.

[8] I. M. J. Van Enckevort and B. G. Ruessink, “Effects of hydrodynamics
and bathymetry on video estimates of nearshore sandbar position,”
Journal of Geophysical Research, vol. 106, pp. 16 969–16 979, 2001.

[9] K. T. Holland, R. A. Holman, T. C. Lippmann, J. Stanley, and N. Plant,
“Practical use of video imagery in nearshore oceanographic field
studies,” Journal of Oceanic Engineering, vol. 22, pp. 81–92, 1997.

[10] K. S. Narendra and K. Parthasarathy, “Identification and control
of dynamical systems using neural networks,” IEEE Trans. Neural
Networks, vol. 1, pp. 4–27, 1990.

[11] D. Rumelhart, G. Hinton, and R. Williams, “Learning internal rep-
resentations by error propagation,” Parallel Distributed Processing,
vol. 1, pp. 318–362, 1986.

[12] R. J. Williams and J. Peng, “An efficient gradient–based algorithm for
on–line training of recurrent network trajectories,” Neural Computa-
tion, vol. 2, no. 4, pp. 490–501, 1990.


