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o A. Wiering aaInstitute of Information and Computing S
ien
es, Utre
htUniversity, Padualaan 14, 3508TB Utre
ht, The NetherlandsAbstra
tNaive Bayesian 
lassi�ers tend to perform very well on a large numberof problem domains, although their representation power is quite limited
ompared to more sophisti
ated ma
hine learning algorithms. In this paperwe study 
ombining multiple naive Bayesian 
lassi�ers by using the hierar-
hi
al mixtures of experts system. This novel system, whi
h we 
all hierar-
hi
al mixtures of naive Bayesian 
lassi�ers, is 
ompared to a simple naiveBayesian 
lassi�er and to using bagging and boosting for 
ombining multiple
lassi�ers. Results on 19 data sets from the UCI repository indi
ate that thehierar
hi
al mixtures ar
hite
ture in general outperforms the other methods.1 Introdu
tionDespite their simpli
ity, naive Bayesian 
lassi�ers [6℄ in general obtain highly 
om-petitive results 
ompared to de
ision trees, neural networks trained with ba
k-propagation, instan
e-based learning algorithms, and other indu
tive learning al-gorithms, see [5℄ for a 
omparison study. The naive Bayesian 
lassi�er (NBC)works well on a wide range of problems with dis
rete and nominal data,1 and isoptimal when attributes are independent given the 
lass. However, in real datasets, the independen
y assumption is often violated. Furthermore, the simple NBClearns a linear dis
riminant fun
tion and is therefore unable to learn linearly in-separable data su
h as the ex
lusive OR problem. Some approa
hes to over
omethis problem 
ombine attributes [9℄, but when there are many attributes, the algo-rithm needs to be exe
uted many times, resulting in slow learning in 
ase multipleattributes need to be 
ombined. Furthermore, 
ombining too many attributes re-sults in large representations and worse generalization performan
e. Instead, weopt for an algorithm whi
h 
an deal with non-linearly separable data in a moreprin
ipled way.Hierar
hi
al models. To solve the ex
lusive OR problem, we 
an use hierar-
hi
al ar
hite
tures, just like linear networks have led to multi-layer per
eptrons.Our 
urrent work is similar to the hierar
hi
al mixtures of experts (HME) algo-rithm [8℄. The HME ar
hite
ture 
an 
onsist of linear networks and is still ableto learn non-linear fun
tions.2 Instead of using linear networks as models, weuse naive Bayesian 
lassi�ers. Thus, we have an ar
hite
ture 
onsisting of gatingNBCs whi
h partition the data and weight the expert NBCs predi
ting the 
lass1For 
ontinuous attributes, the data should be prepro
essed.2The HME method 
an also be 
ombined with nonlinear 
lassi�ers (see e.g., [2℄).



probabilities. This results in a mu
h more powerful 
lassi�er whi
h is able to dealwith non-linearly separable data.Combining models. There exist a number of general algorithms whi
h alsolearn multiple models (
lassi�ers) and 
ombine them to produ
e the �nal result.One algorithm is bagging [3℄ whi
h learns a set of independent models by �rstbootstrapping the data to get a training set and then indu
ing a new NBC on thisdata set. This is then repeated a number of times. The models are then 
ombinedby using majority voting of the predi
ted 
lasses. Another method whi
h re
eives alot of attention is boosting [7, 10℄ whi
h sequentially indu
es a set of models wherethe data is reweighted after indu
ing ea
h new 
lassi�er. This is done so thatmis
lassi�ed examples get higher weight in the training data for the next 
lassi�er.By 
ombining multiple 
lassi�ers through voting, individual errors are 
orre
tedby the other 
lassi�ers. A problem with these methods, however, is that the singleNBCs still have to be able to learn the training data, whi
h they 
annot in 
ase ofthe ex
lusive OR problem. Therefore, the additional representation power whenusing the hierar
hi
al mixtures of NBCs 
an be bene�
ial for parti
ular data sets.Contents. In se
tion 2, we des
ribe naive Bayesian 
lassi�ers (NBCs). Inse
tion 3, we des
ribe hierar
hi
al mixtures of NBCs. In se
tion 4, we 
omparethe single NBC to bagging, boosting and using the novel hierar
hi
al mixturesof NBCs on 19 supervised data sets from the UCI repository. Finally, se
tion 5
on
ludes this paper.2 Naive Bayesian Classi�ersNaive Bayesian 
lassi�ers make an independen
y assumption to make full Bayesianlearning feasible. A representation in whi
h full dependen
y is modelled betweenthe attributes would require an exponential amount of spa
e to store and an ex-ponential amount of time and data to learn. Other statisti
al learning algorithmsuse a set of independen
y relations to 
onstru
t a 
ompa
t Bayesian network al-though exa
t inferen
e is still a NP-hard problem. NBCs make a full independen
ystatement whi
h makes them very fast to train and 
ompa
t to store.2.1 Naive Bayesian Classi�ersThe learning problem is to map a set of features D = ff1; f2; : : : ; fng des
ribing aninstan
e to its 
orre
t 
lass-label C. For this the learning algorithm �rst indu
es amodel (
lassi�er) by learning on the training data (D1; C1); (D2; C2); : : : ; (DT ; CT ).Statisti
al learning algorithms perform the 
lassi�
ation by �rst 
omputing
lass probabilities P (Cjf1; f2; : : : ; fn) of all output 
lasses C given the input fea-tures, and then sele
ting the 
lass with maximal probability. We 
annot storethese probabilities dire
tly, sin
e it would require an exponential amount of stor-age spa
e and the result would not be useful for generalization. Instead, we �rstuse Bayes' rule to 
ompute:P (Cjf1; f2; : : : ; fn) = P (f1; f2; : : : ; fnjC)P (C)P (f1; f2; : : : ; fn)



and to de
rease the size of this model we use the naive Bayes hypotheses of mutualindependen
y among the features given the 
lass, and get:P (Cjf1; f2; : : : ; fn) = �P (C) �i P (fijC)� is a normalization 
onstant to sum all 
lass probabilities given the features to 1.2.2 Learning AlgorithmThe learning algorithm is simple and uses a set of 
ounters3 to store all information:P (C) = 
(C)tot ; and Pi(fijC) = 
i(fi; C)
(C)To deal with the problem of having unobserved (feature-value, 
lass) pairs in thetraining data, we use some parametrized Lapla
e 
orre
tion. For this, we initializethe 
ounters to some small value 
, and sum over them to get the totals. Nowon ea
h learning example (ff1; f2; : : : ; fng; C�), we use the following algorithm toupdate the parameters:Updating NBC(ff1; f2; : : : ; fng; C�; weight):1) 
(C�) += weight2) tot += weight3) For all k = 1 : : : n3a) 
k(fk; C�) += weightHere the weight will be useful for de�ning the forth
oming algorithms. For thesingle naive Bayesian 
lassi�er we use a weight of 1.0. Note that the algorithm isjust using frequen
y 
ounting, and a small prior (
) is used to initialize the model.3 Mixtures of Naive Bayesian Classi�ersThe hierar
hi
al mixtures of experts system of Jordan and Ja
obs (1992) 
onsistsof a number of gating networks and expert networks. The gating networks learnto gate the predi
tions of experts to the top layer network whi
h makes the �nalpredi
tion. The expert networks will spe
ialize on a parti
ular subspa
e of the fullinput spa
e, whereas the gating networks learn whi
h expert performs best on agiven example. We use the same system, but now we use naive Bayesian 
lassi�ers(NBCs) instead of linear neural networks as gating and expert models.3.1 Ar
hite
tureWe will explain a 2-layer ar
hite
ture. Extensions to higher layer ar
hite
tures aretrivial. The system 
onsists of 1 root gating NBC m0, N �rst-layer gating NBCsm11 to mN1 , and N �M expert NBCs m112 to mNM2 . Have a look at �gure 1 whi
hdepi
ts a two-layer ar
hite
ture in whi
h the gating models have two sub-models.3The 
ounter variables 
(C) et
. are represented as real numbers.
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Figure 1: The 2-layer ar
hite
ture 
onsisting of naive Bayesian 
lassi�ers. Thegating NBCs weight the outputs of their sub-models and propagate the weighted sumto the gating NBC one layer above. Expert NBCs estimate the 
lass probabilities�ij given the features.Expert NBCs mij2 output 
lass probabilities given the input features des
rib-ing the instan
e D. The 
lass probabilities 
an be modelled as a ve
tor ~�ij =(�C1ij ; �C2ij ; : : : ; �CKij ), where:�Cij = P ij2 (CjD) = �P ij2 (C)�kP ij2 (fkjC)Here � is again a renormalization 
onstant. The top-layer gating NBC m0 
om-putes the following gating values for its sub-models Mi:gi = P0(MijD) = �P0(Mi)�kP0(fkjMi)Gating NBCs mi1 
ompute output gating values by:gjji = P i1(Mj jD) = �P i1(Mj)�kP i1(fkjMj)So the gating NBCs essentially treat their submodels as 
lasses; they try to 
lassifyan instan
e as the best performing sub-model.Our ar
hite
ture 
onsists of 
ounters for all models. For model mij2 we usetotij2 et
. as 
ounter variables. The 
omplete model should be initialized withsome symmetry breaking 
ounter generator (e.g. by adding a small random valueto the initialization value 
). We want to 
ompute the 
lass probabilities of theroot model given the input dataD = ff1; f2; : : : ; fNg. For this we have to 
ompute
lass probabilities by propagating the predi
tions of the experts to the top. Theoutput of the 
omplete ar
hite
ture is:~� =Xi giXj gjji ~�ij (1)Thus, �C = P0(CjD). For training this system, the gating models have topredi
t how well their sub-models perform given some input data, and let thegating weight of the best model 
onverge to the highest value among the models.



3.2 Learning by Expe
tation MaximizationExpe
tation Maximization [4℄ is a well known method for multiple model �tting inwhi
h mixture 
oeÆ
ients of the lo
al mixture models are learned. The weights forsele
ting ea
h model are latent variables, sin
e they 
annot be estimated dire
tlyfrom the data. Instead a 
ouple of iterations 
an be performed in whi
h the latentvariables 
an be estimated by monitoring the error of individual models.Posterior probabilities. To develop the learning algorithm, we need to 
om-pute posterior probabilities that ea
h model generated the 
orre
t output 
lass C�:hi = giPj gjjiP̂ ij2 (C�jD)Pi giPj gjjiP̂ ij2 (C�jD)and hjji = gjjiP̂ ij2 (C�jD)Pj gjjiP̂ ij2 (C�jD)where we use a Gaussian regression model for 
omputing the probability thatexpert mij2 generated the 
orre
t 
lass label C�:P̂ ij2 (C�jD) = e��(1:0�P ij2 (C�jD))We 
ould also have used other distributions su
h as the Bernoulli distribution, butsele
ted the Gaussian regression model due to its general appli
ability to multiple
lasses. Furthermore, using this model gives us more in
uen
e to 
ontrol thelearning speed in whi
h models start to deviate from ea
h other.We �rst 
ompute the posterior values (Expe
tation step), and then we updatethe gating models so that the best model will get a higher weight on the example,and we update the 
lass probabilities of experts to the real 
lass with a learningrate a

ording to their posterior probabilities (Maximization step). Note that weperform the EM step after ea
h example, thus we have an online sto
hasti
 learningalgorithm. Also, sin
e we use a NBC, the algorithm does not really maximize theprobability of generating the 
orre
t 
lass, but rather makes a small step to in
reasethis probability. The algorithm is thus a generalized EM (GEM) algorithm [8℄.Updating the expert models. After having 
omputed the 
lass probabilitiesfor ea
h model and having 
omputed the posterior probabilities for all models(ex
ept the root model), we 
an adapt the models. We update the 
ounter variablesof expert NBCs mij2 given an example X = (D;C�) by using the NBC updatings
heme. To do this we 
allUpdate-NBC(D;C�; hihjji) for ea
h NBC mij2 . Thus,the weight of the update equals the posterior probability that the expert NBC
ould have generated the 
orre
t 
lass. Updating in this way, 
auses expert NBCswith the largest posterior probability (hihjji) to learn the example fastest and tobias its fun
tion more to this example. All expert NBCs learn on ea
h example.Updating the gating models. For updating the gating NBCs, we make useof the best predi
tive sub-model as the desired output of the 
lassi�er, so that theupdate 
auses this model to be sele
ted with a higher probability. The best sub-model Mb has the largest probability of generating C�. For the top-layer model



we update the model parameters by 
alling: Update-NBC(D;Mb; 1:0). Thus,the best sub-model is now the 
orre
t output (
lass), and the weight of updatingtowards this best model on this example is 1.For the sub-gating NBCs, we multiply the learning weight of 1.0 by the pos-teriori probability hi to obtain the learning weight. We again 
ompute the bestsub-model of ea
h sub-gating NBC mi1, and 
all this M ib . Then we update theparameters of model mi1 by 
alling: Update-NBC(D;M ib ; hi).Solving the ex
lusive OR problem. Before running experiments on realworld data sets, we �rst did some experiments to verify whether the hierar
hi
almixtures of NBCs was able to learn the ex
lusive OR problem. Learning theex
lusive OR problem was no problem at all for a one layer ar
hite
ture | it wasalways able to learn to 
orre
tly 
lassify the four training patterns. Thus, thehierar
hi
al system 
an learn to 
lassify non linearly separable data.4 ExperimentsWe have tested the hierar
hi
al mixtures of NBCs on 19 data sets from the UCIrepository. We prepro
essed 
ontinuous (and nominal data with large values) byusing the mean and standard devian
e and 
omputing signi�
an
e 
lasses using 1standard deviation as a separator between two feature values.Experimental setup. We 
ompared the hierar
hi
al mixtures of naive Bayesian
lassi�ers (HM) to the simple naive Bayesian 
lassi�er, bagging and boosting. Forthe HM ar
hite
tures, we used a single layer ar
hite
ture 
onsisting of 4 expertNBCs, and a 2-layer ar
hite
ture 
onsisting of 2 � 2 expert NBCs. We performedexperiments with bagging and boosting in whi
h the number of models was 10.We performed 50 simulations per data set in whi
h always half of the data set wasused for learning and the other half was used for testing. We used 5 EM iterationsfor ea
h hierar
hi
al system, in whi
h during 1 iteration the 
omplete trainingdata was learned in an online fashion. We kept all learning parameters 
onstant:
 = 0:1 + rand(0; 0:01), � = 0:1.Test results. Table 1 shows the test results on the 19 data sets. The tableindi
ates the per
entages of 
orre
t 
lassi�
ations with the standard devian
e,and signi�
an
e of the results. Here (++, +) indi
ates a signi�
ant improvement(p < 0:01, p < 0:05) 
ompared to the simple NBC. The win-loss row indi
ateshow often the mixtures of NBCs, bagging or boosting signi�
antly (p < 0:05)work better or worse than the simple naive Bayesian 
lassi�er. The average errorredu
tion [1℄ is 
omputed by �rst 
omputing the error redu
tion (ea�eb)ea , where eais the error of the simple NBC, for ea
h data set and then 
omputing the average.The results show that the hierar
hi
al mixtures of NBCs signi�
antly outper-form the simple NBC on 8 data sets and loses on 2 data sets. Furthermore, theyin
rease the average a

ura
y with more than 1%, and redu
e the average errorwith about 7%. Although the di�eren
es may seem quite small, they are signi�-
ant, and for some data sets the simple NBC already seems to rea
h the highestpossible test performan
e4, so that it is diÆ
ult to improve on this. However, for4In other 
omparison studies with other learning algorithms, there also seems to be the same



Table 1: The Training results on the 19 data sets.Data Set NBC 1-4 HM 2-2 HM Bagging BoostingAbalone 68.6�1.2 71:8 � 1:3++ 71:7� 1:0++ 68:9� 1:2= 68:5� 1:5=Breast Can
er 97.2�0.6 97:0 � 0:7= 96:6� 0:8�� 97:3� 0:7= 95:8� 0:9��Car 84.8�1.6 89:4 � 1:2++ 88:3� 1:6++ 83:3� 1:6�� 89:9� 1:2++Chess 87.1�1.1 91:6 � 1:8++ 92:7� 1:7++ 87:2� 1:5= 94:5� 0:8++Contra
eptive 51.4�1.2 51:8 � 1:4= 51:5� 1:5= 50:9� 1:6= 51:0� 1:5=E
oli 73.8�2.8 73:1 � 3:8= 73:5� 3:5= 73:8� 3:2= 73:3� 3:2=Glass 48.5�5.1 51:0 � 5:3+ 51:9� 5:2++ 50:9� 4:9+ 51:0� 5:7+Hepatitis 85.5�2.8 83:2 � 3:6�� 82:8� 3:5�� 84:4� 3:2= 82:2� 3:6��Housing 59.3�2.3 63:5 � 3:8++ 67:7� 2:5++ 61:4� 3:5++ 59:7� 2:7=Ionosphere 90.0�1.8 91:3 � 1:4++ 91:0� 2:2+ 90:1� 1:5= 90:2� 2:3=Iris 90.2�3.5 90:1 � 2:9= 90:1� 3:5= 89:2� 2:6= 90:0� 2:4=Liver Bupa 60.0�3.0 60:8 � 3:0= 60:3� 3:1= 58:4� 2:9�� 60:5� 3:1=Pima Indians 75.0�1.4 74:2 � 2:3� 75:0� 1:6= 75:2� 2:0= 73:3� 2:1��Segmentation 78.7�4.0 79:3 � 5:6= 79:7� 6:4= 78:6� 4:8= 77:8� 5:4=Servo 82.3�4.2 83:0 � 3:8= 82:1� 3:3= 80:2� 4:9� 82:6� 3:7=Soybeans 89.5�2.2 91:6 � 2:4++ 91:5� 2:6++ 90:1� 1:9= 91:3� 1:9++Spam 90.9�0.4 91:0 � 0:5= 91:1� 0:1= 90:6� 0:5= 90:2� 0:7��Vote 90.6�1.7 92:7 � 1:7++ 93:3� 2:3++ 90:4� 1:5= 94:1� 1:5++Yeast 56.6�1.1 57:1 � 1:4= 57:0� 1:3= 56:2� 1:5= 56:5� 1:5=Average : 76.8 78.1 78.3 76.7 77.5Av. error red. - 6.7 6.6 -1.5 3.2Sign. Win-loss : - 8 : 2 8 : 2 3 : 3 5 : 4parti
ular data sets the improvements are quite large and for some of these datasets we found that larger HM ar
hite
tures even worked better.When we examine bagging, we 
an see that it sometimes works better than theNBC, but as many times works worse (espe
ially for data sets with few features),so there is no real improvement in 
ombining bagging with NBCs in general.Boosting outperforms the NBC signi�
antly in a number of domains su
h asCar, Chess, and Vote, but on many other data sets does not lead to an improve-ment. In some domains, boosting results in a larger error. Boosting improves theaverage a

ura
y, but performs on average less well than the hierar
hi
al system.5 Con
lusionWe introdu
ed the hierar
hi
al mixtures of naive Bayesian 
lassi�ers whi
h is basedon the hierar
hi
al mixtures of experts system. All gating and expert modelsare naive Bayesian 
lassi�ers, and the 
lassi
al naive Bayes updating s
heme isextended for training the hierar
hi
al system. We have shown that the hierar
hi
alextension 
an learn to 
lassify non linearly separable data, whi
h a simple naiveBayesian 
lassi�er 
annot. In the experiments we 
ompared the novel hierar
hi
alsystem to the 
at naive Bayesian 
lassi�er and two other te
hniques for 
ombiningmultiple 
lassi�ers | bagging and boosting. The experimental results on 19 datasets from the UCI repository show that the hierar
hi
al mixtures of naive Bayesian
lassi�ers in general outperforms the other tested learning methods. In our 
urrentmaximal a

ura
y for these parti
ular data sets.



work, the hierar
hi
al ar
hite
ture had to be designed a-priori. In future workwe want to study growing ar
hite
tures online using 
ross-validation to test theappropriateness of an ar
hite
ture. In this way we want to 
ir
umvent usingar
hite
tures whi
h 
an under�t or over�t the learning data and thus performpoorly on the test data. Finally, we want to study 
ombining variants of the HMEar
hite
ture with other algorithms su
h as support ve
tor ma
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