
Hierarhial Mixtures of Naive Bayesian Classi�ersMaro A. Wiering aaInstitute of Information and Computing Sienes, UtrehtUniversity, Padualaan 14, 3508TB Utreht, The NetherlandsAbstratNaive Bayesian lassi�ers tend to perform very well on a large numberof problem domains, although their representation power is quite limitedompared to more sophistiated mahine learning algorithms. In this paperwe study ombining multiple naive Bayesian lassi�ers by using the hierar-hial mixtures of experts system. This novel system, whih we all hierar-hial mixtures of naive Bayesian lassi�ers, is ompared to a simple naiveBayesian lassi�er and to using bagging and boosting for ombining multiplelassi�ers. Results on 19 data sets from the UCI repository indiate that thehierarhial mixtures arhiteture in general outperforms the other methods.1 IntrodutionDespite their simpliity, naive Bayesian lassi�ers [6℄ in general obtain highly om-petitive results ompared to deision trees, neural networks trained with bak-propagation, instane-based learning algorithms, and other indutive learning al-gorithms, see [5℄ for a omparison study. The naive Bayesian lassi�er (NBC)works well on a wide range of problems with disrete and nominal data,1 and isoptimal when attributes are independent given the lass. However, in real datasets, the independeny assumption is often violated. Furthermore, the simple NBClearns a linear disriminant funtion and is therefore unable to learn linearly in-separable data suh as the exlusive OR problem. Some approahes to overomethis problem ombine attributes [9℄, but when there are many attributes, the algo-rithm needs to be exeuted many times, resulting in slow learning in ase multipleattributes need to be ombined. Furthermore, ombining too many attributes re-sults in large representations and worse generalization performane. Instead, weopt for an algorithm whih an deal with non-linearly separable data in a moreprinipled way.Hierarhial models. To solve the exlusive OR problem, we an use hierar-hial arhitetures, just like linear networks have led to multi-layer pereptrons.Our urrent work is similar to the hierarhial mixtures of experts (HME) algo-rithm [8℄. The HME arhiteture an onsist of linear networks and is still ableto learn non-linear funtions.2 Instead of using linear networks as models, weuse naive Bayesian lassi�ers. Thus, we have an arhiteture onsisting of gatingNBCs whih partition the data and weight the expert NBCs prediting the lass1For ontinuous attributes, the data should be preproessed.2The HME method an also be ombined with nonlinear lassi�ers (see e.g., [2℄).



probabilities. This results in a muh more powerful lassi�er whih is able to dealwith non-linearly separable data.Combining models. There exist a number of general algorithms whih alsolearn multiple models (lassi�ers) and ombine them to produe the �nal result.One algorithm is bagging [3℄ whih learns a set of independent models by �rstbootstrapping the data to get a training set and then induing a new NBC on thisdata set. This is then repeated a number of times. The models are then ombinedby using majority voting of the predited lasses. Another method whih reeives alot of attention is boosting [7, 10℄ whih sequentially indues a set of models wherethe data is reweighted after induing eah new lassi�er. This is done so thatmislassi�ed examples get higher weight in the training data for the next lassi�er.By ombining multiple lassi�ers through voting, individual errors are orretedby the other lassi�ers. A problem with these methods, however, is that the singleNBCs still have to be able to learn the training data, whih they annot in ase ofthe exlusive OR problem. Therefore, the additional representation power whenusing the hierarhial mixtures of NBCs an be bene�ial for partiular data sets.Contents. In setion 2, we desribe naive Bayesian lassi�ers (NBCs). Insetion 3, we desribe hierarhial mixtures of NBCs. In setion 4, we omparethe single NBC to bagging, boosting and using the novel hierarhial mixturesof NBCs on 19 supervised data sets from the UCI repository. Finally, setion 5onludes this paper.2 Naive Bayesian Classi�ersNaive Bayesian lassi�ers make an independeny assumption to make full Bayesianlearning feasible. A representation in whih full dependeny is modelled betweenthe attributes would require an exponential amount of spae to store and an ex-ponential amount of time and data to learn. Other statistial learning algorithmsuse a set of independeny relations to onstrut a ompat Bayesian network al-though exat inferene is still a NP-hard problem. NBCs make a full independenystatement whih makes them very fast to train and ompat to store.2.1 Naive Bayesian Classi�ersThe learning problem is to map a set of features D = ff1; f2; : : : ; fng desribing aninstane to its orret lass-label C. For this the learning algorithm �rst indues amodel (lassi�er) by learning on the training data (D1; C1); (D2; C2); : : : ; (DT ; CT ).Statistial learning algorithms perform the lassi�ation by �rst omputinglass probabilities P (Cjf1; f2; : : : ; fn) of all output lasses C given the input fea-tures, and then seleting the lass with maximal probability. We annot storethese probabilities diretly, sine it would require an exponential amount of stor-age spae and the result would not be useful for generalization. Instead, we �rstuse Bayes' rule to ompute:P (Cjf1; f2; : : : ; fn) = P (f1; f2; : : : ; fnjC)P (C)P (f1; f2; : : : ; fn)



and to derease the size of this model we use the naive Bayes hypotheses of mutualindependeny among the features given the lass, and get:P (Cjf1; f2; : : : ; fn) = �P (C) �i P (fijC)� is a normalization onstant to sum all lass probabilities given the features to 1.2.2 Learning AlgorithmThe learning algorithm is simple and uses a set of ounters3 to store all information:P (C) = (C)tot ; and Pi(fijC) = i(fi; C)(C)To deal with the problem of having unobserved (feature-value, lass) pairs in thetraining data, we use some parametrized Laplae orretion. For this, we initializethe ounters to some small value , and sum over them to get the totals. Nowon eah learning example (ff1; f2; : : : ; fng; C�), we use the following algorithm toupdate the parameters:Updating NBC(ff1; f2; : : : ; fng; C�; weight):1) (C�) += weight2) tot += weight3) For all k = 1 : : : n3a) k(fk; C�) += weightHere the weight will be useful for de�ning the forthoming algorithms. For thesingle naive Bayesian lassi�er we use a weight of 1.0. Note that the algorithm isjust using frequeny ounting, and a small prior () is used to initialize the model.3 Mixtures of Naive Bayesian Classi�ersThe hierarhial mixtures of experts system of Jordan and Jaobs (1992) onsistsof a number of gating networks and expert networks. The gating networks learnto gate the preditions of experts to the top layer network whih makes the �nalpredition. The expert networks will speialize on a partiular subspae of the fullinput spae, whereas the gating networks learn whih expert performs best on agiven example. We use the same system, but now we use naive Bayesian lassi�ers(NBCs) instead of linear neural networks as gating and expert models.3.1 ArhitetureWe will explain a 2-layer arhiteture. Extensions to higher layer arhitetures aretrivial. The system onsists of 1 root gating NBC m0, N �rst-layer gating NBCsm11 to mN1 , and N �M expert NBCs m112 to mNM2 . Have a look at �gure 1 whihdepits a two-layer arhiteture in whih the gating models have two sub-models.3The ounter variables (C) et. are represented as real numbers.
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Figure 1: The 2-layer arhiteture onsisting of naive Bayesian lassi�ers. Thegating NBCs weight the outputs of their sub-models and propagate the weighted sumto the gating NBC one layer above. Expert NBCs estimate the lass probabilities�ij given the features.Expert NBCs mij2 output lass probabilities given the input features desrib-ing the instane D. The lass probabilities an be modelled as a vetor ~�ij =(�C1ij ; �C2ij ; : : : ; �CKij ), where:�Cij = P ij2 (CjD) = �P ij2 (C)�kP ij2 (fkjC)Here � is again a renormalization onstant. The top-layer gating NBC m0 om-putes the following gating values for its sub-models Mi:gi = P0(MijD) = �P0(Mi)�kP0(fkjMi)Gating NBCs mi1 ompute output gating values by:gjji = P i1(Mj jD) = �P i1(Mj)�kP i1(fkjMj)So the gating NBCs essentially treat their submodels as lasses; they try to lassifyan instane as the best performing sub-model.Our arhiteture onsists of ounters for all models. For model mij2 we usetotij2 et. as ounter variables. The omplete model should be initialized withsome symmetry breaking ounter generator (e.g. by adding a small random valueto the initialization value ). We want to ompute the lass probabilities of theroot model given the input dataD = ff1; f2; : : : ; fNg. For this we have to omputelass probabilities by propagating the preditions of the experts to the top. Theoutput of the omplete arhiteture is:~� =Xi giXj gjji ~�ij (1)Thus, �C = P0(CjD). For training this system, the gating models have topredit how well their sub-models perform given some input data, and let thegating weight of the best model onverge to the highest value among the models.



3.2 Learning by Expetation MaximizationExpetation Maximization [4℄ is a well known method for multiple model �tting inwhih mixture oeÆients of the loal mixture models are learned. The weights forseleting eah model are latent variables, sine they annot be estimated diretlyfrom the data. Instead a ouple of iterations an be performed in whih the latentvariables an be estimated by monitoring the error of individual models.Posterior probabilities. To develop the learning algorithm, we need to om-pute posterior probabilities that eah model generated the orret output lass C�:hi = giPj gjjiP̂ ij2 (C�jD)Pi giPj gjjiP̂ ij2 (C�jD)and hjji = gjjiP̂ ij2 (C�jD)Pj gjjiP̂ ij2 (C�jD)where we use a Gaussian regression model for omputing the probability thatexpert mij2 generated the orret lass label C�:P̂ ij2 (C�jD) = e��(1:0�P ij2 (C�jD))We ould also have used other distributions suh as the Bernoulli distribution, butseleted the Gaussian regression model due to its general appliability to multiplelasses. Furthermore, using this model gives us more inuene to ontrol thelearning speed in whih models start to deviate from eah other.We �rst ompute the posterior values (Expetation step), and then we updatethe gating models so that the best model will get a higher weight on the example,and we update the lass probabilities of experts to the real lass with a learningrate aording to their posterior probabilities (Maximization step). Note that weperform the EM step after eah example, thus we have an online stohasti learningalgorithm. Also, sine we use a NBC, the algorithm does not really maximize theprobability of generating the orret lass, but rather makes a small step to inreasethis probability. The algorithm is thus a generalized EM (GEM) algorithm [8℄.Updating the expert models. After having omputed the lass probabilitiesfor eah model and having omputed the posterior probabilities for all models(exept the root model), we an adapt the models. We update the ounter variablesof expert NBCs mij2 given an example X = (D;C�) by using the NBC updatingsheme. To do this we allUpdate-NBC(D;C�; hihjji) for eah NBC mij2 . Thus,the weight of the update equals the posterior probability that the expert NBCould have generated the orret lass. Updating in this way, auses expert NBCswith the largest posterior probability (hihjji) to learn the example fastest and tobias its funtion more to this example. All expert NBCs learn on eah example.Updating the gating models. For updating the gating NBCs, we make useof the best preditive sub-model as the desired output of the lassi�er, so that theupdate auses this model to be seleted with a higher probability. The best sub-model Mb has the largest probability of generating C�. For the top-layer model



we update the model parameters by alling: Update-NBC(D;Mb; 1:0). Thus,the best sub-model is now the orret output (lass), and the weight of updatingtowards this best model on this example is 1.For the sub-gating NBCs, we multiply the learning weight of 1.0 by the pos-teriori probability hi to obtain the learning weight. We again ompute the bestsub-model of eah sub-gating NBC mi1, and all this M ib . Then we update theparameters of model mi1 by alling: Update-NBC(D;M ib ; hi).Solving the exlusive OR problem. Before running experiments on realworld data sets, we �rst did some experiments to verify whether the hierarhialmixtures of NBCs was able to learn the exlusive OR problem. Learning theexlusive OR problem was no problem at all for a one layer arhiteture | it wasalways able to learn to orretly lassify the four training patterns. Thus, thehierarhial system an learn to lassify non linearly separable data.4 ExperimentsWe have tested the hierarhial mixtures of NBCs on 19 data sets from the UCIrepository. We preproessed ontinuous (and nominal data with large values) byusing the mean and standard deviane and omputing signi�ane lasses using 1standard deviation as a separator between two feature values.Experimental setup. We ompared the hierarhial mixtures of naive Bayesianlassi�ers (HM) to the simple naive Bayesian lassi�er, bagging and boosting. Forthe HM arhitetures, we used a single layer arhiteture onsisting of 4 expertNBCs, and a 2-layer arhiteture onsisting of 2 � 2 expert NBCs. We performedexperiments with bagging and boosting in whih the number of models was 10.We performed 50 simulations per data set in whih always half of the data set wasused for learning and the other half was used for testing. We used 5 EM iterationsfor eah hierarhial system, in whih during 1 iteration the omplete trainingdata was learned in an online fashion. We kept all learning parameters onstant: = 0:1 + rand(0; 0:01), � = 0:1.Test results. Table 1 shows the test results on the 19 data sets. The tableindiates the perentages of orret lassi�ations with the standard deviane,and signi�ane of the results. Here (++, +) indiates a signi�ant improvement(p < 0:01, p < 0:05) ompared to the simple NBC. The win-loss row indiateshow often the mixtures of NBCs, bagging or boosting signi�antly (p < 0:05)work better or worse than the simple naive Bayesian lassi�er. The average errorredution [1℄ is omputed by �rst omputing the error redution (ea�eb)ea , where eais the error of the simple NBC, for eah data set and then omputing the average.The results show that the hierarhial mixtures of NBCs signi�antly outper-form the simple NBC on 8 data sets and loses on 2 data sets. Furthermore, theyinrease the average auray with more than 1%, and redue the average errorwith about 7%. Although the di�erenes may seem quite small, they are signi�-ant, and for some data sets the simple NBC already seems to reah the highestpossible test performane4, so that it is diÆult to improve on this. However, for4In other omparison studies with other learning algorithms, there also seems to be the same



Table 1: The Training results on the 19 data sets.Data Set NBC 1-4 HM 2-2 HM Bagging BoostingAbalone 68.6�1.2 71:8 � 1:3++ 71:7� 1:0++ 68:9� 1:2= 68:5� 1:5=Breast Caner 97.2�0.6 97:0 � 0:7= 96:6� 0:8�� 97:3� 0:7= 95:8� 0:9��Car 84.8�1.6 89:4 � 1:2++ 88:3� 1:6++ 83:3� 1:6�� 89:9� 1:2++Chess 87.1�1.1 91:6 � 1:8++ 92:7� 1:7++ 87:2� 1:5= 94:5� 0:8++Contraeptive 51.4�1.2 51:8 � 1:4= 51:5� 1:5= 50:9� 1:6= 51:0� 1:5=Eoli 73.8�2.8 73:1 � 3:8= 73:5� 3:5= 73:8� 3:2= 73:3� 3:2=Glass 48.5�5.1 51:0 � 5:3+ 51:9� 5:2++ 50:9� 4:9+ 51:0� 5:7+Hepatitis 85.5�2.8 83:2 � 3:6�� 82:8� 3:5�� 84:4� 3:2= 82:2� 3:6��Housing 59.3�2.3 63:5 � 3:8++ 67:7� 2:5++ 61:4� 3:5++ 59:7� 2:7=Ionosphere 90.0�1.8 91:3 � 1:4++ 91:0� 2:2+ 90:1� 1:5= 90:2� 2:3=Iris 90.2�3.5 90:1 � 2:9= 90:1� 3:5= 89:2� 2:6= 90:0� 2:4=Liver Bupa 60.0�3.0 60:8 � 3:0= 60:3� 3:1= 58:4� 2:9�� 60:5� 3:1=Pima Indians 75.0�1.4 74:2 � 2:3� 75:0� 1:6= 75:2� 2:0= 73:3� 2:1��Segmentation 78.7�4.0 79:3 � 5:6= 79:7� 6:4= 78:6� 4:8= 77:8� 5:4=Servo 82.3�4.2 83:0 � 3:8= 82:1� 3:3= 80:2� 4:9� 82:6� 3:7=Soybeans 89.5�2.2 91:6 � 2:4++ 91:5� 2:6++ 90:1� 1:9= 91:3� 1:9++Spam 90.9�0.4 91:0 � 0:5= 91:1� 0:1= 90:6� 0:5= 90:2� 0:7��Vote 90.6�1.7 92:7 � 1:7++ 93:3� 2:3++ 90:4� 1:5= 94:1� 1:5++Yeast 56.6�1.1 57:1 � 1:4= 57:0� 1:3= 56:2� 1:5= 56:5� 1:5=Average : 76.8 78.1 78.3 76.7 77.5Av. error red. - 6.7 6.6 -1.5 3.2Sign. Win-loss : - 8 : 2 8 : 2 3 : 3 5 : 4partiular data sets the improvements are quite large and for some of these datasets we found that larger HM arhitetures even worked better.When we examine bagging, we an see that it sometimes works better than theNBC, but as many times works worse (espeially for data sets with few features),so there is no real improvement in ombining bagging with NBCs in general.Boosting outperforms the NBC signi�antly in a number of domains suh asCar, Chess, and Vote, but on many other data sets does not lead to an improve-ment. In some domains, boosting results in a larger error. Boosting improves theaverage auray, but performs on average less well than the hierarhial system.5 ConlusionWe introdued the hierarhial mixtures of naive Bayesian lassi�ers whih is basedon the hierarhial mixtures of experts system. All gating and expert modelsare naive Bayesian lassi�ers, and the lassial naive Bayes updating sheme isextended for training the hierarhial system. We have shown that the hierarhialextension an learn to lassify non linearly separable data, whih a simple naiveBayesian lassi�er annot. In the experiments we ompared the novel hierarhialsystem to the at naive Bayesian lassi�er and two other tehniques for ombiningmultiple lassi�ers | bagging and boosting. The experimental results on 19 datasets from the UCI repository show that the hierarhial mixtures of naive Bayesianlassi�ers in general outperforms the other tested learning methods. In our urrentmaximal auray for these partiular data sets.



work, the hierarhial arhiteture had to be designed a-priori. In future workwe want to study growing arhitetures online using ross-validation to test theappropriateness of an arhiteture. In this way we want to irumvent usingarhitetures whih an under�t or over�t the learning data and thus performpoorly on the test data. Finally, we want to study ombining variants of the HMEarhiteture with other algorithms suh as support vetor mahines.Referenes[1℄ E. Bauer and R. Kohavi. An empirial omparison of voting lassi�ationalgorithms: Bagging, boosting, and variants. Mahine Learning, 36:105 {142, 1999.[2℄ C. M. Bishop. Neural Networks for Pattern Reognition. Clarendon-Press,Oxford, 1995.[3℄ Leo Breiman. Bagging preditors. Mahine Learning, 24(2):123{140, 1996.[4℄ A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from in-omplete data via the EM algorithm. Journal of the Royal Statistial Soiety,Series "B", 39:1{38, 1977.[5℄ Pedro Domingos and Mihael J. Pazzani. On the optimality of the simpleBayesian lassi�er under zero-one loss. Mahine Learning, 29(2-3):103{130,1997.[6℄ R.O. Duda and P.E. Hart. Pattern lassi�ation and sene analysis. NewYork: John Wiley and Sons, 1973.[7℄ Yoav Freund and Robert E. Shapire. Experiments with a new boosting algo-rithm. In Proeedings of the thirteenth International Conferene on MahineLearning, pages 148{156. Morgan Kaufmann, 1996.[8℄ M. I. Jordan and R. A. Jaobs. Hierarhies of adaptive experts. In J. E.Moody, S. J. Hanson, and R. P. Lippmann, editors, Advanes in Neural In-formation Proessing Systems 4, pages 985{993. Morgan Kau�mann, 1992.[9℄ M. Pazzani. Searhing for dependenies in Bayesian lassi�ers. In D. Fisherand H.J. Lenz, editors, Learning from data: Arti�ial intelligene and statis-tis V, pages 239{248, 1996.[10℄ Robert E. Shapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boostingthe margin: a new explanation for the e�etiveness of voting methods. InProeedings of the fourteenth International Conferene on Mahine Learning,pages 322{330. Morgan Kaufmann, 1997.


