Hierarchical Mixtures of Naive Bayesian Classifiers

Marco A. Wiering *

anstitute of Information and Computing Sciences, Utrecht
University, Padualaan 14, 3508 TB Utrecht, The Netherlands

Abstract

Naive Bayesian classifiers tend to perform very well on a large number
of problem domains, although their representation power is quite limited
compared to more sophisticated machine learning algorithms. In this paper
we study combining multiple naive Bayesian classifiers by using the hierar-
chical mixtures of experts system. This novel system, which we call hierar-
chical mixtures of naive Bayesian classifiers, is compared to a simple naive
Bayesian classifier and to using bagging and boosting for combining multiple
classifiers. Results on 19 data sets from the UCI repository indicate that the
hierarchical mixtures architecture in general outperforms the other methods.

1 Introduction

Despite their simplicity, naive Bayesian classifiers [6] in general obtain highly com-
petitive results compared to decision trees, neural networks trained with back-
propagation, instance-based learning algorithms, and other inductive learning al-
gorithms, see [5] for a comparison study. The naive Bayesian classifier (NBC)
works well on a wide range of problems with discrete and nominal data,' and is
optimal when attributes are independent given the class. However, in real data
sets, the independency assumption is often violated. Furthermore, the simple NBC
learns a linear discriminant function and is therefore unable to learn linearly in-
separable data such as the exclusive OR problem. Some approaches to overcome
this problem combine attributes [9], but when there are many attributes, the algo-
rithm needs to be executed many times, resulting in slow learning in case multiple
attributes need to be combined. Furthermore, combining too many attributes re-
sults in large representations and worse generalization performance. Instead, we
opt for an algorithm which can deal with non-linearly separable data in a more
principled way.

Hierarchical models. To solve the exclusive OR problem, we can use hierar-
chical architectures, just like linear networks have led to multi-layer perceptrons.
Our current work is similar to the hierarchical mixtures of experts (HME) algo-
rithm [8]. The HME architecture can consist of linear networks and is still able
to learn non-linear functions.? Instead of using linear networks as models, we
use naive Bayesian classifiers. Thus, we have an architecture consisting of gating
NBCs which partition the data and weight the expert NBCs predicting the class

LFor continuous attributes, the data should be preprocessed.
2The HME method can also be combined with nonlinear classifiers (see e.g., [2]).

probabilities. This results in a much more powerful classifier which is able to deal
with non-linearly separable data.

Combining models. There exist a number of general algorithms which also
learn multiple models (classifiers) and combine them to produce the final result.
One algorithm is bagging [3] which learns a set of independent models by first
bootstrapping the data to get a training set and then inducing a new NBC on this
data set. This is then repeated a number of times. The models are then combined
by using majority voting of the predicted classes. Another method which receives a
lot of attention is boosting [7, 10] which sequentially induces a set of models where
the data is reweighted after inducing each new classifier. This is done so that
misclassified examples get higher weight in the training data for the next classifier.
By combining multiple classifiers through voting, individual errors are corrected
by the other classifiers. A problem with these methods, however, is that the single
NBCs still have to be able to learn the training data, which they cannot in case of
the exclusive OR problem. Therefore, the additional representation power when
using the hierarchical mixtures of NBCs can be beneficial for particular data sets.

Contents. In section 2, we describe naive Bayesian classifiers (NBCs). In
section 3, we describe hierarchical mixtures of NBCs. In section 4, we compare
the single NBC to bagging, boosting and using the novel hierarchical mixtures
of NBCs on 19 supervised data sets from the UCI repository. Finally, section 5
concludes this paper.

2 Naive Bayesian Classifiers

Naive Bayesian classifiers make an independency assumption to make full Bayesian
learning feasible. A representation in which full dependency is modelled between
the attributes would require an exponential amount of space to store and an ex-
ponential amount of time and data to learn. Other statistical learning algorithms
use a set of independency relations to construct a compact Bayesian network al-
though exact inference is still a NP-hard problem. NBCs make a full independency
statement which makes them very fast to train and compact to store.

2.1 Naive Bayesian Classifiers

The learning problem is to map a set of features D = {fi, f2, ..., fn} describing an
instance to its correct class-label C. For this the learning algorithm first induces a
model (classifier) by learning on the training data (D', C*"), (D?,C?),...,(DT,CT).

Statistical learning algorithms perform the classification by first computing
class probabilities P(C|f1, f2, ..., fn) of all output classes C given the input fea-
tures, and then selecting the class with maximal probability. We cannot store
these probabilities directly, since it would require an exponential amount of stor-
age space and the result would not be useful for generalization. Instead, we first
use Bayes’ rule to compute:

P(f1, fa,--., falC)P(C)
P(f17f27"'7fn)

P(C|f15f2a"'7f'n) =

and to decrease the size of this model we use the naive Bayes hypotheses of mutual
independency among the features given the class, and get:

P(C\f1, f2y-.-, fn) =aP(C) II; P(f;|C)

« is a normalization constant to sum all class probabilities given the features to 1.

2.2 Learning Algorithm

The learning algorithm is simple and uses a set of counters® to store all information:

C(C)- _ ¢i(fi, C)

tot ’ and - P(fi|C) = e(C)

To deal with the problem of having unobserved (feature-value, class) pairs in the
training data, we use some parametrized Laplace correction. For this, we initialize
the counters to some small value «, and sum over them to get the totals. Now
on each learning example ({f1, f2,..., fn}, C*), we use the following algorithm to
update the parameters:

P(C) =

Updating NBC({f1, fa,..., fn}, C*, weight):
1) ¢(C*) += weight

2) tot += weight

3) For all k=1...n

3a) cp(fr,C*) += weight

Here the weight will be useful for defining the forthcoming algorithms. For the
single naive Bayesian classifier we use a weight of 1.0. Note that the algorithm is
just using frequency counting, and a small prior () is used to initialize the model.

3 Mixtures of Naive Bayesian Classifiers

The hierarchical mixtures of experts system of Jordan and Jacobs (1992) consists
of a number of gating networks and expert networks. The gating networks learn
to gate the predictions of experts to the top layer network which makes the final
prediction. The expert networks will specialize on a particular subspace of the full
input space, whereas the gating networks learn which expert performs best on a
given example. We use the same system, but now we use naive Bayesian classifiers
(NBCs) instead of linear neural networks as gating and expert models.

3.1 Architecture

We will explain a 2-layer architecture. Extensions to higher layer architectures are
trivial. The system consists of 1 root gating NBC myg, N first-layer gating NBCs
ml toml, and N x M expert NBCs mi! to mY¥™. Have a look at figure 1 which
depicts a two-layer architecture in which the gating models have two sub-models.

3The counter variables ¢(C) etc. are represented as real numbers.

Class probabilities

[Input features]

Figure 1: The 2-layer architecture consisting of naive Bayesian classifiers. The
gating NBCs weight the outputs of their sub-models and propagate the weighted sum
to the gating NBC one layer above. Ezpert NBCs estimate the class probabilities
lij given the features.

Expert NBCs m;j output class probabilities given the input features describ-

ing the instance D. The class probabilities can be modelled as a vector p;; =
¢, C c

(Mg s Bifs -+ o5 i), Where:

u; = PY/(CID) = Py ()L P (£4|C)

Here « is again a renormalization constant. The top-layer gating NBC mgy com-
putes the following gating values for its sub-models M;:

gi = Po(M;| D) = aPo(M;)1 Po(fi|M;)
Gating NBCs m! compute output gating values by:
9j1i = P{(M;|D) = aP{(M;)TIx P{(fy| M;)

So the gating NBCs essentially treat their submodels as classes; they try to classify
an instance as the best performing sub-model. -

Our architecture consists of counters for all models. For model ms we use
tot;j etc. as counter variables. The complete model should be initialized with
some symmetry breaking counter generator (e.g. by adding a small random value
to the initialization value 7). We want to compute the class probabilities of the
root model given the input data D = {f1, f2,..., fn}. For this we have to compute
class probabilities by propagating the predictions of the experts to the top. The
output of the complete architecture is:

A= Zgizgmlﬁj (1)
i J

Thus, u© = Py(C|D). For training this system, the gating models have to
predict how well their sub-models perform given some input data, and let the
gating weight of the best model converge to the highest value among the models.

3.2 Learning by Expectation Maximization

Expectation Maximization [4] is a well known method for multiple model fitting in
which mixture coefficients of the local mixture models are learned. The weights for
selecting each model are latent variables, since they cannot be estimated directly
from the data. Instead a couple of iterations can be performed in which the latent
variables can be estimated by monitoring the error of individual models.
Posterior probabilities. To develop the learning algorithm, we need to com-
pute posterior probabilities that each model generated the correct output class C*:

gi Zj gj\ipgij(c*|D)
2190 g;1:P (C*|D)

hi =

and R
g1 P’ (C*|D)
>, 9Py’ (C*|D)
where we use a Gaussian regression model for computing the probability that
expert my generated the correct class label C*:

hjji =

Pi (C*|D) = e~ (L0-F¥ (C1D)

We could also have used other distributions such as the Bernoulli distribution, but
selected the Gaussian regression model due to its general applicability to multiple
classes. Furthermore, using this model gives us more influence to control the
learning speed in which models start to deviate from each other.

We first compute the posterior values (Expectation step), and then we update
the gating models so that the best model will get a higher weight on the example,
and we update the class probabilities of experts to the real class with a learning
rate according to their posterior probabilities (Maximization step). Note that we
perform the EM step after each example, thus we have an online stochastic learning
algorithm. Also, since we use a NBC, the algorithm does not really maximize the
probability of generating the correct class, but rather makes a small step to increase
this probability. The algorithm is thus a generalized EM (GEM) algorithm [8].

Updating the expert models. After having computed the class probabilities
for each model and having computed the posterior probabilities for all models
(except the root model), we can adapt the models. We update the counter variables
of expert NBCs my given an example X = (D,C*) by using the NBC updating
scheme. To do this we call Update-NBC(D, C*, h;h;;) for each NBC m? Thus,
the weight of the update equals the posterior probability that the expert NBC
could have generated the correct class. Updating in this way, causes expert NBCs
with the largest posterior probability (h;h;|;) to learn the example fastest and to
bias its function more to this example. All expert NBCs learn on each example.

Updating the gating models. For updating the gating NBCs, we make use
of the best predictive sub-model as the desired output of the classifier, so that the
update causes this model to be selected with a higher probability. The best sub-
model Mj has the largest probability of generating C*. For the top-layer model

we update the model parameters by calling: Update-NBC(D, M},1.0). Thus,
the best sub-model is now the correct output (class), and the weight of updating
towards this best model on this example is 1.

For the sub-gating NBCs, we multiply the learning weight of 1.0 by the pos-
teriori probability h; to obtain the learning weight. We again compute the best
sub-model of each sub-gating NBC m¢!, and call this M;. Then we update the
parameters of model m} by calling: Update-NBC(D, M}, h;).

Solving the exclusive OR problem. Before running experiments on real
world data sets, we first did some experiments to verify whether the hierarchical
mixtures of NBCs was able to learn the exclusive OR problem. Learning the
exclusive OR problem was no problem at all for a one layer architecture — it was
always able to learn to correctly classify the four training patterns. Thus, the
hierarchical system can learn to classify non linearly separable data.

4 Experiments

We have tested the hierarchical mixtures of NBCs on 19 data sets from the UCI
repository. We preprocessed continuous (and nominal data with large values) by
using the mean and standard deviance and computing significance classes using 1
standard deviation as a separator between two feature values.

Experimental setup. We compared the hierarchical mixtures of naive Bayesian
classifiers (HM) to the simple naive Bayesian classifier, bagging and boosting. For
the HM architectures, we used a single layer architecture consisting of 4 expert
NBCs, and a 2-layer architecture consisting of 2 x 2 expert NBCs. We performed
experiments with bagging and boosting in which the number of models was 10.
We performed 50 simulations per data set in which always half of the data set was
used for learning and the other half was used for testing. We used 5 EM iterations
for each hierarchical system, in which during 1 iteration the complete training
data was learned in an online fashion. We kept all learning parameters constant:
~v= 0.1+ rand(0,0.01), o = 0.1.

Test results. Table 1 shows the test results on the 19 data sets. The table
indicates the percentages of correct classifications with the standard deviance,
and significance of the results. Here (++, 4) indicates a significant improvement
(p < 0.01, p < 0.05) compared to the simple NBC. The win-loss row indicates
how often the mixtures of NBCs, bagging or boosting significantly (p < 0.05)
work better or worse than the simple naive Bayesian classifier. The average error
reduction [1] is computed by first computing the error reduction M, where e,
is the error of the simple NBC, for each data set and then computiné the average.

The results show that the hierarchical mixtures of NBCs significantly outper-
form the simple NBC on 8 data sets and loses on 2 data sets. Furthermore, they
increase the average accuracy with more than 1%, and reduce the average error
with about 7%. Although the differences may seem quite small, they are signifi-
cant, and for some data sets the simple NBC already seems to reach the highest
possible test performance?, so that it is difficult to improve on this. However, for

4In other comparison studies with other learning algorithms, there also seems to be the same

Table 1: The Training results on the 19 data sets.

Data Set NBC 1-4 HM 2-2 HM Bagging Boosting
ABALONE 68.6+1.2 71.8+1.3FF 717+1.0TF 689+ 127 68.5+ 1.5~
BRrREAST CANCER 97.240.6 97.0 +£ 0.7 96.6 +=0.87 97.3 +£0.77 95.8+0.9"
CAR 84.8+1.6 89.4+1.27TF 883 +1.67TF 833+1.6 ~ 89.9+1.2FF
CHESS 87.1+1.1 91.6+1.8FF 927+1.7FF gr2a+15— 94.5+0.8FF
CONTRACEPTIVE 51.441.2 51.8 + 1.4 51.5 +1.5% 50.9 + 1.6 51.0 = 1.5
EcoLl 73.842.8 73.1 £3.8° 73.5 £ 3.5 73.8 £3.2° 73.3 £3.2°
GLASS 48.545.1 51.0 £5.3T 51.9 £5.2TF 509 +4.9T 51.0 £5.7T
HEPATITIS 85.5+2.8 83.2+3.6- 82.8+3.5 _ 84.4+3.27 82.2+3.6"
HOUSING 59.34£2.3 63.5+3.8TFT 67.7+£25TT 61.4+£35TFT 59.7+2.7°
TONOSPHERE 90.04£1.8 91.3+1.47TF 91.0+2.27F 90.1 £ 1.5~ 90.2 + 2.3
RIS 90.2£3.5 90.1 £2.9° 90.1 £ 3.5 89.2£2.6 90.0 £ 2.4~
LIVER BUpA 60.0+£3.0 60.8 +3.0~ 60.3 + 3.1~ 58.44+2.9" " 60.5+3.1"
Piva INDIANS 75.0+1.4 74.2 +£2.37 75.0 1.6 75.2 + 2.0 73.3+2.177
SEGMENTATION 78.744.0 79.3 £5.67 79.7 6.4~ 78.6 +4.87 77.8+5.47
SERVO 82.3+4.2 83.0 £ 3.8~ 82.1 £ 3.3~ 80.2 + 4.9~ 82.6 + 3.7~
SOYBEANS 89.5+2.2 91.6+24FTF 915+26TF 90.1+1.9" 91.3+1.97F
SpPAM 90.940.4 91.0+0.5= 91.1+0.1~ 90.6 + 0.5~ 90.2 £ 0.7~
VorE 90.6+£1.7 92.7+1.7FF 933+23FF 904+15" 94.1 +1.5TFF
YEAST 56.6£1.1 57.1 £1.4- 57.0 1.3~ 562+ 1.5 56.5 £ 1.5
AVERAGE : 76.8 78.1 78.3 76.7 77.5

AV. ERROR RED. - 6.7 6.6 -1.5 3.2

S1GN. WIN-LOSS : - 8:2 8:2 3:3 5:4

particular data sets the improvements are quite large and for some of these data
sets we found that larger HM architectures even worked better.

When we examine bagging, we can see that it sometimes works better than the
NBC, but as many times works worse (especially for data sets with few features),
so there is no real improvement in combining bagging with NBCs in general.

Boosting outperforms the NBC significantly in a number of domains such as
Car, Chess, and Vote, but on many other data sets does not lead to an improve-
ment. In some domains, boosting results in a larger error. Boosting improves the
average accuracy, but performs on average less well than the hierarchical system.

5 Conclusion

We introduced the hierarchical mixtures of naive Bayesian classifiers which is based
on the hierarchical mixtures of experts system. All gating and expert models
are naive Bayesian classifiers, and the classical naive Bayes updating scheme is
extended for training the hierarchical system. We have shown that the hierarchical
extension can learn to classify non linearly separable data, which a simple naive
Bayesian classifier cannot. In the experiments we compared the novel hierarchical
system to the flat naive Bayesian classifier and two other techniques for combining
multiple classifiers — bagging and boosting. The experimental results on 19 data
sets from the UCI repository show that the hierarchical mixtures of naive Bayesian
classifiers in general outperforms the other tested learning methods. In our current

maximal accuracy for these particular data sets.

work, the hierarchical architecture had to be designed a-priori. In future work
we want to study growing architectures online using cross-validation to test the
appropriateness of an architecture. In this way we want to circumvent using
architectures which can underfit or overfit the learning data and thus perform
poorly on the test data. Finally, we want to study combining variants of the HME
architecture with other algorithms such as support vector machines.

References

[1]

8]

[9]

[10]

E. Bauer and R. Kohavi. An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine Learning, 36:105 —
142, 1999.

C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon-Press,
Oxford, 1995.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society,
Series "B”, 39:1-38, 1977.

Pedro Domingos and Michael J. Pazzani. On the optimality of the simple
Bayesian classifier under zero-one loss. Machine Learning, 29(2-3):103-130,
1997.

R.O. Duda and P.E. Hart. Pattern classification and scene analysis. New
York: John Wiley and Sons, 1973.

Yoav Freund and Robert E. Schapire. Experiments with a new boosting algo-
rithm. In Proceedings of the thirteenth International Conference on Machine
Learning, pages 148-156. Morgan Kaufmann, 1996.

M. I. Jordan and R. A. Jacobs. Hierarchies of adaptive experts. In J. E.
Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural In-
formation Processing Systems 4, pages 985-993. Morgan Kauffmann, 1992.

M. Pazzani. Searching for dependencies in Bayesian classifiers. In D. Fisher
and H.J. Lenz, editors, Learning from data: Artificial intelligence and statis-
tics V, pages 239-248, 1996.

Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting
the margin: a new explanation for the effectiveness of voting methods. In

Proceedings of the fourteenth International Conference on Machine Learning,
pages 322-330. Morgan Kaufmann, 1997.

