A* Path Planning for Line Segmentation of Handwritten Documents

O.Surinta, M. Holtkamp, F. Karaaba, JP. van Oosten, L. Schomaker and M. Wiering Institute of Artificial Intelligence and Cognitive Engineering (ALICE), University of Groningen

Abstract

> The novelty of the proposed approach lies in the use of a smart combination of simple soft cost function that allows an artificial agent to compute paths separating the upper and lower text fields.

> The use of soft cost functions enables the agent to **compute** near-optimal separating paths even if the upper and lower text parts are overlapping in particular places.

ICFHR 2014

Dar de ses gerne hasse enboren ager Sur Se josen mit oven congen OD em ver veren vinde Run en Ausurou the MLS dataset

coepit galliae uel germaniae diffamari prouncias ; L'audabatur ab omibur colebatur acuncur! A deo ut theodericuf rex film hildibette nepof figibera qui co compore burgundionibus regnabat. I deum sepe ue nira apricum euf suffragia summa cum deuorione Deposere ; Quem cum patter ser increpares cur conc binarum polluerour amplexibut & nonportur leguin consugar conubio fruerecur ! monital euf obtemperant. cuncta butufmodi inlicita: se uttaturum promisit 7 Sed brunnihilder aus regif undens cum uri di confilut obedire · familo malitie concitata · mentem serpentino

the **IAM-HistDB**

Pre-processing

a) The original handwritten document image **b)** Background noise is removed by Otsu's algorithm **c)** The result of Sauvola's algorithm (a window size of 20x20 pixels) **d)** Smooth ink density histogram and local maxima represent the text lines.

didum igner folif inbar fingulari decore omnium infe re amorem ficutadeco prius quam nasceretur pr

The A* Algorithm with simple cost function

Qui nna reliquinus > The agent ann lequeremur

correctly separates two character lines

> Some lines are not segmented correctly, the agent cannot divide the two touching text lines

 $1 + \min(d(n, n_{v_{n}}), d(n, n_{v_{d}}))$

 $D(n)^{2} = \frac{1}{1 + \min(d(n, n_{y_{u}}), d(n, n_{y_{d}}))^{2}}$

Proposed Cost Functions for line segmentation with A* Path-Planning Algorithm

The Ink Distance D(n) = -**Cost Functions**

The A* Path-Planning Algorithm for Text Line Segmentation

theoderical rex film hildibette nepol signberred qui co -compore burgundionibus regnabat Adeum sope ne nira apricum auf suffragia summa cum devocione

- 2. The Map-Obstacle Cost Function M(n)
- 3. The Vertical Cost Function $V(n) = abs(n_v - n_v^{start})$ 4. The Neighbor Cost Function
 - $N(s_i, s_i)$

> The proposed A* pathplanning algorithm uses

Hit rate and line accuracy of line segmentation

Dataset	Hit rate	Line Accuracy
MLS (our method)	0.9280	0.9000
Saint Gall (our method)	0.9980	0.9999
(Baechler <i>et al</i> .)	0.9600	0.9540
(Garz <i>et al</i> .)	0.9865	0.9797

university of groningen

for infinity

The **MLS** dataset is available at

http://www.ai.rug.nl/ ~mrolarik/MLS/