
A* Path Planning for Line Segmentation of
Handwritten Documents

Olarik Surinta, Michiel Holtkamp, Faik Karabaa, Jean-Paul van Oosten, Lambert Schomaker and Marco Wiering
Institute of Artificial Intelligence and Cognitive Engineering, University of Groningen

Nijenborgh 9, Groningen, The Netherlands

Email: {o.surinta, m.j.holtkamp, m.f.karabaa, j.p.van.oosten, l.r.b.schomaker, m.a.wiering}@rug.nl

Abstract—This paper describes the use of a novel A∗ path-
planning algorithm for performing line segmentation of hand-
written documents. The novelty of the proposed approach lies
in the use of a smart combination of simple soft cost functions
that allows an artificial agent to compute paths separating the
upper and lower text fields. The use of soft cost functions enables
the agent to compute near-optimal separating paths even if the
upper and lower text parts are overlapping in particular places.
We have performed experiments on the Saint Gall and Monk
line segmentation (MLS) datasets. The experimental results show
that our proposed method performs very well on the Saint Gall
dataset, and also demonstrate that our algorithm is able to cope
well with the much more complicated MLS dataset.

Keywords—Document analysis, A∗ path-planning algorithm,
Handwritten historical manuscripts, Line segmentation.

I. INTRODUCTION

Current search engines are very useful for people to search
for information on the Internet. However, there is still a lot
of information available on the Internet that cannot be used
efficiently, because this information is contained in scanned
document images that cannot be read or understood in an
effective way by current search engine technology. We are
especially interested in making handwritten documents acces-
sible to people by recognizing the contents of these documents
and making them searchable with a new generation of search
engines tailored to handwritten documents.

The MONK system is a historical manuscript recognition
system, consisting of many techniques for searching for words
in historical manuscript collections. The system consists of
different handwriting recognition algorithms, which are trained
by crowd sourcing techniques where volunteers can create
ground-truth labels for words and lines that occur in the
historical documents [1], [2].

In this paper we describe a novel line segmentation algo-
rithm for handwritten documents. Line segmentation [3] is one
of the first techniques that needs to be applied to a document,
before individual words or characters can be found and (parts
of) the handwritten text can be automatically recognized. It
should be noted that line segmentation is an intrinsically ill-
posed problem that can only be solved using an interaction
between classifiers and separation modules. Therefore, there is
currently no method that can optimally deal with all difficulties
such as curved lines and touching text lines, see Fig. 1, Fig
3(a), and Fig. 7(d) for some complicated examples.

Related work. The first step that is performed by a line
segmentation algorithm is to find potential candidates for

starting points of lines separating upper and lower text fields.
Most often this step uses horizontal projection profiles, in
which the amount of black ink is summed over the x-axis to
obtain a profile indicating text areas having a lot or little to no
black ink. Bulacu et al. [2] proposed the smoothed horizontal
projection profile to more robustly detect peaks and valleys
in the binarized document image. In [4], the handwritten
document is divided into chunks, and the smoothed projection
profile in each chunk is calculated. Then, the valleys in the
projection profile are considered as the starting state of the
text lines. Also in [5], the baselines of the valleys are used to
define the starting states for the separating lines.

After defining the starting states, various methods for
finding the line separating upper and lower text ares have been
proposed, we refer to [3] for a complete survey on this area.
In [2], a droplet method that preserves the ink connectivity
is developed. Beginning in the starting state, first an initial
straight path is generated. Then, the document image is turned
90 degrees and an artificial water droplet is moved from the
top to the bottom of the page. This droplet tries to move
around the ink along the straight path with the aim to preserve
the ascenders and descenders in the final segmentation. The
experimental results on a part of a dataset named “the cabinet
of the Dutch queen” containing 32,816 lines (31.6 per page)
showed that 99.8% of the lines were correctly segmented.

Saabni and El-Sana [6] proposed the use of the seam
carving method to perform language-independent text line
extraction. This method finds the extreme points that indicate
the layout of text lines by first generating an energy map using
the signed distance transform. The minimum energy paths pass
along the middle of the text lines. The region of the text line is
estimated from a set of intersecting components. Finally, the
components between two consecutive lines are extracted and
associated to the closest text line.

Garz et al. [7] proposed a binarization-free text line seg-
mentation algorithm. First, parts-of-character interest points

Fig. 1. A complicated historical manuscript example from the MLS dataset.

2014 14th International Conference on Frontiers in Handwriting Recognition

2167-6445/14 $31.00 © 2014 IEEE

DOI 10.1109/ICFHR.2014.37

175

are located by means of the Difference of Gaussians (DoG)
filter after which locations of local minima and maxima are
found in the gray-scale image. These detected interest points
represent the most significant locations of portions of the
text. Then, an energy map is computed around the located
text points, and the seam carving technique is used to find
a connected path with minimum cost that goes through low
energy parts. This technique provides a hit rate of 0.9865 on
1,431 text lines of the Saint Gall1 dataset.

Louloudis et al. [8] proposed the use of the Hough trans-
form to perform line segmentation. In this method, the average
width and height of connected components in the whole
document are computed and used for partitioning the text into
sub-areas. The sub-areas are again partitioned into equally
sized blocks. After that the ink gravity enter is computed
in each block. Finally, the set of all gravity center points is
processed by the linear Hough transform to find a straight
separating line. This technique provides a line detection rate of
97.4% on the ICDAR 2007 handwriting segmentation contest
dataset.

Although these previous methods perform well when the
text is structured, they still suffer from inaccurate line segmen-
tations in case characters of subsequent lines are overlapping
and even touching. Therefore the aim of this research is
to develop a robust method to deal with this overlapping
or touching text-lines problem and to obtain accurate line
segmentations for different kinds of manuscripts.

Contributions. This paper proposes a line segmentation
method based on the A∗ path-planning algorithm [9]. This
well-known path-planning algorithm is combined with a num-
ber of cost functions to determine the optimal path separating
upper and lower text areas. The cost functions have been
designed in order to allow the separating path to go through
text areas, although the path incurs a cost if it cuts ink pixels
or gets close to them. This makes the proposed method very
useful in case upper and lower text fields are overlapping or
connected. The A∗ path-planning algorithm has been widely
used in the field of artificial intelligence, however, this paper
shows that this technique can also be very beneficial for line
segmentation purposes. We have performed experiments on
the Saint Gall dataset, and on several historical handwritten
documents from the MONK line segmentation (MLS) dataset2,
which is a selection from the MONK collection.

Paper Outline. This paper is organized as follows. In
Section II, the method for detecting starting states of separating
lines is explained and the datasets with handwritten historical
manuscripts, which are used in our experiments, are described.
Section III describes the A∗ path-planning algorithm for text
line segmentation. A combination of novel cost functions is
described that is used by the A∗ path-planning method to
find near-optimal separating paths. The experimental results
are described in Section IV. Finally, Section V discusses the
findings of this paper and describes future work.

1The Saint Gall dataset is available at
http://www.iam.unibe.ch/fki/databases

2The MONK line segmentation (MLS) dataset is available at
http://www.ai.rug.nl/∼ mrolarik/MLS/

II. TEXT LINE LOCALIZATION

An important aspect of line segmentation is to automati-
cally detect the locations of text lines. In our approach, text
line localization is performed in two steps: binarization and
projection profile analysis. In the first step, the handwritten
document images are binarized using a binarization technique.
Such a technique takes into account the diversity of document
images, texts, images, mixtures of texts and images, line
drawings, and noisy or degraded document images. Bulacu
et al. [2] and Surinta et al. [10] use Otsu’s algorithm, a global
binarization technique, in their work. Otsu’s algorithm uses
one threshold value to process an entire document image.
This algorithm is not performing well when the background
of the document image is complicated as shown in Fig.
2(b). On the other hand, Sauvola’s algorithm [11] for local
binarization copes effectively with complex backgrounds as
shown in Fig. 2(c). Because the contrast between handwriting
and background is low (see Fig. 2(a)), the threshold value is
calculated by the mean and standard deviation of the local
neighborhood of the gray pixel values. This threshold value
has to be calculated for each pixel [12], [13].

(a) (b) (c)

Fig. 2. Results of the document image after using a binarization technique. (a)
The original handwritten document image, (b) background noise is removed
by Otsu’s algorithm, and (c) the result of Sauvola’s algorithm.

The experimental evaluation of the proposed method
is done on two handwritten historical manuscript datasets,
namely the MLS and the Saint Gall datasets (Fig. 3). The
MLS dataset contains medieval, historical and contemporary
manuscripts, and has the purpose of testing line-segmentation
algorithms. The collection contains a wide variation of the
common problems in handwriting recognition: lines with over-
lapping ascenders/descenders, slightly rotated scans and curved
base lines. The Saint Gall dataset is written in the 9th century,
uses Latin script and contains 60 pages. Each page is written
in one column and some pages contain a graphic [7], [14].

In this research, we have used Sauvola’s algorithm with a
window size of 20 × 20 pixels [14] to convert the typically
300 dpi gray document image to a binary document image,
the result of which is shown in Fig. 2(c). The structure of
the characters is legible [15] when zooming into the pixel
level, see Fig. 4. Unfortunately, Sauvola’s algorithm was not
able to delete all non-text graphics. For this reason, in case it
failed, we manually removed the graphics. We will research
automatic removal of all graphics and other issues related to
layout analysis in future work.

The second step uses the concept of projection profile
analysis [16] for finding the location of the text lines in
the handwritten document image. The horizontal ink density
histogram of the document image is computed by taking the

176

(a)

(b)

Fig. 3. A variety of handwritten historical manuscript samples. (a) Four
samples from the MLS dataset. (b) Two samples from the Saint Gall dataset,
which is one dataset in the IAM historical document database (IAM-HistDB).
Please note the problem of vertical overlap, especially in Figure (a) up-right.

Fig. 4. Result of Sauvola’s algorithm when zooming to the pixel level.

sum of the black pixel values in the corresponding row, and
then storing the values into a vector. Subsequently, the maxima
are extracted from the vector. In our case, we consider the
starting points for line segmentation to fall in between the local
maxima of the ink density histogram. For dealing with noise,
we make use of a persistance threshold, which allows to avoid
false local maxima. Therefore, we only consider local maxima
if the ink density histogram value at some local maximum
is larger than (μh − σh), where μh is the average of the ink
density histogram and σh is the standard deviation. Then these
located local maxima represent the text lines, and the starting
and end points for the subsequent line segmentation stage are
set in the middle between two subsequent local maxima.

III. THE A∗ PATH-PLANNING ALGORITHM FOR TEXT

LINE SEGMENTATION

Path planning has been applied to different applications
in artificial intelligence, such as in robotic systems, route
planners, and games. The aim of path planning is to compute
the shortest path that allows the agent to reach its destination
given its current position. Path-planning methods compute a
path for a given environmental representation in the form of a
map [17]. The environmental map can contain many obstacles,
which the agent is not allowed to pass through.

The goal of the A∗ path-planning algorithm is to minimize
the sum of costs on the path between the starting state s1 and

the goal-state sn. If we denote sa1 , s
a
2 , . . . s

a
n as the sequence

of states traversed by path pa, then the goal is to compute the
optimal path p∗ with the lowest total traveling cost:

p∗ = argmin
pa

na−1∑

i=1

C(sai , s
a
i+1) (1)

where C(si, sj) is the cost to go from state si to state sj .

The A∗ path-planning algorithm uses some heuristic func-
tion to speed up computing the optimal solution to reach the
goal state. The algorithm combines the cost of the current
path between the starting state and the current state with
an admissible heuristic function that estimates the shortest
possible cost from the current state to the goal state. The
heuristic function uses the Euclidean distance to compute a
lower bound on the expected cost to travel to the goal state
from the current state.

A. The Problem with Unreachable Goal States

The standard A∗ path-planning algorithm cannot address
the problem of an unreachable goal state. For example, it
cannot find a goal state when it is enclosed from all sides by
obstacles. This is because in the standard algorithm the agent
is not allowed to move through obstacles and then in this case
it can never compute a path to reach the goal state.

We are interested in line segmentation of handwritten his-
torical manuscripts. In our problem, black ink pixels are con-
verted to obstacles and the start and goal states are determined
based on the text line localization method explained in Section
II. When using the original A* path-planning algorithm for this
problem, it is effective when the components of two lines do
not overlap. On the other hand, the output of the algorithm is
incorrect when the handwritten text of two subsequent lines
is overlapping. Some results of the standard A∗ path-planning
algorithm are shown in Fig. 5(a) and Fig. 5(b). The result in
Fig. 5(a) is good and shows that for easy cases the standard
algorithm can separate the lines well with an almost straight
line. The result in Fig. 5(b) clearly shows the problem of the
standard A* algorithm when the text parts of two lines are
overlapping.

(a) (b)

Fig. 5. Illustrations of the standard A∗ path-planning algorithm. (a) The
agent correctly separates two character lines. (b) The agent cannot divide the
two touching text lines, because it cannot move through obstacles.

Our proposed A∗ path-planning algorithm operates quite
differently from the standard method. Most importantly, our
A∗ algorithm allows the agent to pass through obstacles.
However, going through them incurs some cost and therefore
it is better for the agent not to traverse these obstacles, if
possible. Consequently, the problem of the touching text lines
is solved at the algorithm level.

177

B. Cost Functions in our A∗ Path-Planning Algorithm

Our A∗ path-planning algorithm uses five cost functions.
These cost functions are combined to compute the traveling
cost from a state until the goal state is reached. We will now
explain the used cost functions in our path-planning algorithm.

1) The Ink Distance Cost Functions D (n) and D(n)2:
These two cost functions control the agent to stay more or less
in between ink pixels above and below. They use the closest
distance d of the agent to possible obstacles in the upward and
downward directions. The ink distance cost function D(n) for
traveling through state n is:

D(n) =
1

1 +min (d (n, nyu
) , d (n, nyd

))
(2)

where d(n, nyu) and d(n, nyd
) are the distances between the

state n and the closest obstacle (ink pixel) in the upward
and downward direction, respectively. The distance is set to
a maximum value if no obstacle is found in that direction.
Note that the cost is highest (with a value of 1) if the agent
passes an obstacle. Figure 6 illustrates this cost function. We
also make use of D(n)2 which attributes a much higher cost
to getting close to pixel values compared to staying further
away from the black pixels. D(n)2 is defined as follows:

D(n)2 =
1

1 +min (d (n, nyu
) , d (n, nyd

))
2 (3)

Fig. 6. Illustration of the ink distance cost function. The minimum cost is
computed from the distance between state n and the closest obstacles in the
upward direction yu and the downward direction yd.

2) The Map-Obstacle Cost Function M(n): To enforce the
agent from trying not to traverse obstacles in the map so that
it does not cut through black ink, we created another cost
function that gives a penalty only if the agent passes through
an obstacle. In this cost function M(n) returns 1, if the state
n lies on a black pixel, and otherwise M(n) returns 0.

3) The Vertical Cost Function V (n): The vertical cost
function V (n) is used so that the path does not deviate too
much from the y-position of the starting and end position.
This prevents the agent from going up or down an entire line.
The cost function V (n) is defined as:

V (n) = abs(ny − nstart
y)

where ny is the y-position of the current state and nstart
y is

the y-position of the starting point.

4) The Neighbor Cost Function N(si, sj): The neighbor
cost N(si, sj) is used to compute the shortest path between
the start and goal state, and is the same as also used in the
standard A* path-planning algorithm. When making a move
to a new state, the cost N(si, sj) is 10 for a vertical and
horizontal step and the cost is 14 for diagonal directions. In
each state the agent can make use of 8-directional movements.

The proposed A∗ path-planning algorithm now uses the
following combined cost-function C(si, sj):

C(si, sj) = cdD(si) + cd2D(si)
2 + cmM(si) (4)

+cvV (si) + cnN(si, sj)

The parameters cd, cd2, cm, cv and cn have been tuned
using some images during preliminary experiments. This cost
function is used to compute the path cost. After each move the
state with the lowest value is used to expand its current path.
Once the goal-state is to be expanded, the optimal path based
on the used cost functions has been found.

IV. EXPERIMENTAL EVALUATION

The whole algorithm now works as follows. In the first
step the handwritten historical manuscripts are binarized using
Sauvola’s algorithm. In the second step the smoothed hori-
zontal ink density histogram of the binary image is calculated.
Then peaks of the horizontal ink density histogram are detected
by the local maxima method. The starting state of each line is
set between subsequent peaks. Finally, the A∗ path-planning
algorithm is applied.

Our line segmentation system has been applied to handwrit-
ten historical manuscripts from the MLS and the Saint Gall
dataset. The values we used for the experiments on the
Saint Gall dataset are: cd = 150, cd2 = 50, cm = 50, cv = 3,
and cn = 1. The values we used for the experiments on the
heterogeneous MLS dataset are: cd = 130, cd2 = 0, cm = 50,
cv = 2.5, and cn = 1.

Some results of the A∗ path-planning algorithm are shown
in Fig. 7. The text lines are separated by the optimal path (i.e.
the path with the lowest cost). Some line segmentation results
on whole document parts of our method are shown in Fig. 8.

The ground-truth line segmentation for these datasets is
acquired manually with the help of a tool developed for this
task. This tool presents a scanned document in a web page, and
allows the human user to mark handwritten text with the mouse
pointer by selecting a vertical area (denoted by two y-values
in the image) using JavaScript (see Fig. 9). After annotating
these text lines, the page image is split as follows: for each line
annotation the area above and below the line area are whitened
in a copy of the original image. This preserves the original
image size. Descenders and ascenders from respectively the
lines above and below are not removed by this process; they
are removed manually by whitening them with a simple paint
program (e.g., xpaint). This procedure yields the ground truth
for the target line.

Both the input images and output images are losslessly
compressed to prevent any influence from lossy compression
artefacts. Each line annotation image is named as the original

178

(a)

(b)

(c)

(d)

Fig. 7. Some results of our A∗ path-planning algorithm.

(a)

(b)

Fig. 8. Line segmentation results on handwritten documents from (a) the
Saint Gall dataset and (b) the MLS dataset.

image, appended with a line number. This allows the matching
of the ground-truth images with the output images of our A∗

path-planning algorithm.

For evaluating the performance of the line segmentation
algorithm, we will use the pixel-level hit rate and the line
detection accuracy measure on the binary document image, as
proposed by Li et al. [18] and Garz et al. [7].

After the line segmentation algorithm is finished, we will
have M ground-truth lines and N detected lines. Now a matrix
P of size M × N is computed, where Pij is the number of
shared black pixels between the ith ground-truth line and the
jth detected line [7], [19]. The goodness of assigning particular
ground-truth lines to particular detected lines is given by the
total number of shared black pixels given this assignment.
From all the possible assignments the optimal one is selected,
resulting in the value G(Smax) indicating the total number of
shared pixels for the optimal assignment Smax. The pixel-level
hit rate is now defined as follows:

Hr =
G(Smax)

|GT ∪R| (5)

where GT is the set of black pixels in the ground-truth line,
and R is the total number of black pixels found by our
algorithm including pixels which are not in the ground-truth.

We also use the text-line detection accuracy measure [18],

[19]. A line i is correctly detected if
Gij(Smax)

|GTi| ≥ 0.9 and
Gij(Smax)

|Rj | ≥ 0.9. where GTi is the set of black pixels in the

ground-truth line i, Rj is the set of black pixels in the matching
j-th line found by our algorithm and Gij is the number of
shared black pixels between line i of the ground-truth and the
j-th detected line. This measure is affected by missing parts
of the text-line and additional noise in the detected line.

We computed results on the Saint Gall dataset using a
manuscript containing a total of 1,429 lines and on different
manuscripts from the MLS dataset containing in total 995 lines.
For the Saint Gall dataset, our method obtains a near-perfect
pixel-level hit rate of 0.998 and a line-detection accuracy of
0.999. The computation time for the 1,429 lines is around
8 minutes. On the much more complicated MLS dataset our
method obtains a pixel-level hit rate of 0.928 and a line-
detection accuracy of 0.9. The computation time for this
dataset for the 995 lines is around 26 minutes. Most errors
on the MLS dataset are caused by our method for detecting
starting points of lines, because this dataset contains some
very short lines, with which our line detection algorithm cannot
cope well. Other errors on the MLS dataset are caused by lines
which are not horizontal, but slanted.

Table I presents the hit rate and the line accuracy for
the Saint Gall dataset for several methods. In this table the
performance of our method is compared with two systems
including the method by Garz et al. [7] and the method
by Baechler et al. [19]. The results show that our method
outperforms previous methods on this dataset.

TABLE I. LINE ACCURACY AND HIT RATE OF LINE SEGMENTATION ON

THE SAINT GALL DATASET

Hit rate Line Accuracy

Baechler et al. 0.9600 0.9540
Garz et al. 0.9865 0.9797

Our method 0.9980 0.9990

179

Fig. 9. Illustration of the ground-truth tool. The text line area is marked by
the human user.

V. CONCLUSION

In this paper an A∗ path-planning algorithm is described
that uses a combination of cost functions to control a line
segmentation agent. The algorithm uses a binarized image
obtained from a handwritten text image using Sauvola’s algo-
rithm. The start and end points of a line are detected using the
smoothed horizontal ink density histogram. The algorithm uses
different cost functions to stay as far away as possible from ink
pixels and at the same time tries to compute the shortest path.
The results on two historical line-segmentation datasets show
that our A∗ path-planning algorithm successfully separates
subsequent text lines, even when they partially overlap. The
advantages of the proposed method are that our method is
fairly simple to implement, quite fast, and robust for different
kinds of handwritten documents. The disadvantage is that
sometimes the method prefers to cut some text instead of
going up with a curved character. This is a consequence
of the trade-off between staying away from ink pixels and
computing the shortest path. As stated in the introduction a
synergy between bottom-up and top-down processing using
text classification likelihoods can solve these problems in the
future. Also Sauvola’s algorithm needs to be applied iteratively
using several window sizes in a real system.

In future work, layout analysis [2], [19] will be used to han-
dle the document image before applying the line segmentation
technique. We will use an object detection technique to detect
non-text graphics in the handwritten images. Furthermore, we
plan to use an energy function [7] that can be computed on
gray images instead of the black/white images we used in this
paper. Given the current system, it would be interesting to
see if the parameters can be automatically optimized using
an adaptive framework. Finally, we will apply the A∗ path-
planning algorithm to a handwritten Thai dataset, which we
recently collected, and combine this with handwritten character
recognition algorithms.

REFERENCES

[1] M. Bulacu, A. Brink, T. van der Zant, and L. Schomaker, “Recogni-
tion of handwritten numerical fields in a large single-writer historical

collection,” in Document Analysis and Recognition, 2009. ICDAR ’09.
10th International Conference on, 2009, pp. 808–812.

[2] M. Bulacu, R. van Koert, L. Schomaker, and T. van der Zant, “Layout
analysis of handwritten historical documents for searching the archive of
the cabinet of the Dutch queen,” in Document Analysis and Recognition,
2007. ICDAR ’07. 9th International Conference on, vol. 1, 2007, pp.
357–361.

[3] L. Likforman-Sulem, A. Zahour, and B. Taconet, “Text line segmen-
tation of historical documents: a survey,” International Journal of
Document Analysis and Recognition (IJDAR), vol. 9, no. 2-4, pp. 123–
138, 2007.

[4] M. Arivazhagan, H. Srinivasan, and S. Srihari, “A statistical approach to
line segmentation in handwritten documents,” in Document Recognition
and Retrieval XIV, 2007. DDR ’07. 14th Conference on, vol. 6500, 2007,
pp. 65 000T–65 000T–11.

[5] R. Chamchong and C. C. Fung, “Text line extraction using adaptive
partial projection for palm leaf manuscripts from Thailand,” in Frontiers
in Handwriting Recognition, 2012. ICFHR ’12, 13th International
Conference on, 2012, pp. 588–593.

[6] R. Saabni and J. El-Sana, “Language-independent text lines extraction
using seam carving,” in Document Analysis and Recognition (ICDAR),
2011 International Conference on, Sept 2011, pp. 563–568.

[7] A. Garz, A. Fischer, R. Sablatnig, and H. Bunke, “Binarization-free
text line segmentation for historical documents based on interest point
clustering,” in Document Analysis Systems (DAS), 2012 10th IAPR
International Workshop on, 2012, pp. 95–99.

[8] G. Louloudis, B. Gatos, I. Pratikakis, and C. Halatsis, “Text line and
word segmentation of handwritten documents,” Pattern Recognition,
vol. 42, no. 12, pp. 3169–3183, 2009.

[9] N. Nilsson, Principles of Artificial Intelligence, ser. Symbolic Compu-
tation / Artificial Intelligence. Springer, 1982.

[10] O. Surinta, L. Schomaker, and M. Wiering, “A comparison of feature
extraction and pixel-based methods for recognizing handwritten Bangla
digits,” in Document Analysis and Recognition, 2013. ICDAR ’13. 12th
International Conference on, 2013, pp. 165–169.

[11] J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,”
Pattern Recognition, vol. 33, no. 2, pp. 225–236, 2000.

[12] T. R. Singh, S. Roy, O. I. Singh, T. Sinam, and K. M. Singh, “A
new local adaptive thresholding technique in binarization,” International
Journal of Computer Science Issues, vol. 8, pp. 271–277, 2011.

[13] F. Shafait, D. Keysers, and T. M. Breuel, “Efficient implementation of
local adaptive thresholding techniques using integral images,” in Doc-
ument Recognition and Retrieval XV, 2008. DDR ’08. 15th Conference
on, 2008, pp. 681 510–681 510–6.

[14] A. Fischer, V. Frinken, A. Fornés, and H. Bunke, “Transcription
alignment of Latin manuscripts using hidden Markov models,” in
Proceedings of the 2011 Workshop on Historical Document Imaging
and Processing. HIP ’11, 2011, pp. 29–36.

[15] E. Badekas and N. Papamarkos, “Optimal combination of document
binarization techniques using a self-organizing map neural network,”
Engineering Applications of Artificial Intelligence, vol. 20, no. 1, pp.
11–24, 2007.

[16] R. Ghosh, D. Bhattacharyya, T.-h. Kim, and G.-s. Lee, “New algorithm
for skewing detection of handwritten Bangla words,” in Signal Process-
ing, Image Processing and Pattern Recognition, ser. Communications
in Computer and Information Science, T.-h. Kim, H. Adeli, C. Ramos,
and B.-H. Kang, Eds. Springer Berlin Heidelberg, 2011, vol. 260, pp.
153–159.

[17] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in Robotics and Automation, 1994. ICRA 1994. IEEE
International Conference on, 1994, pp. 3310–3317 vol.4.

[18] Y. Li, Y. Zheng, D. Doermann, S. Jaeger, and Y. Li, “Script-independent
text line segmentation in freestyle handwritten documents,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 30, no. 8,
pp. 1313–1329, 2008.

[19] M. Baechler, M. Liwicki, and R. Ingold, “Text line extraction using
DMLP classifiers for historical manuscripts,” in Document Analysis and
Recognition, 2013. ICDAR ’13. 12th International Conference on, 2013,
pp. 1029–1033.

180

