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Abstract—The identification of a person on the basis of scanned images of handwriting is a useful biometric modality with application in

forensic and historic document analysis and constitutes an exemplary study area within the research field of behavioral biometrics. We

developed new and very effective techniques for automatic writer identification and verification that use probability distribution functions

(PDFs) extracted from the handwriting images to characterize writer individuality. A defining property of our methods is that they are

designed to be independent of the textual content of the handwritten samples. Our methods operate at two levels of analysis: the texture

level and the character-shape (allograph) level. At the texture level, we use contour-based joint directional PDFs that encode orientation

and curvature information to give an intimate characterization of individual handwriting style. In our analysis at the allograph level, the

writer is considered to be characterized by a stochastic pattern generator of ink-trace fragments, or graphemes. The PDF of these simple

shapes in a given handwriting sample is characteristic for the writer and is computed using a common shape codebook obtained by

grapheme clustering. Combining multiple features (directional, grapheme, and run-length PDFs) yields increased writer identification and

verification performance. The proposed methods are applicable to free-style handwriting (both cursive and isolated) and have practical

feasibility, under the assumption that a few text lines of handwritten material are available in order to obtain reliable probability estimates.

Index Terms—Handwriting analysis, writer identification and verification, behavioral biometrics, joint directional probability

distributions, grapheme-emission probability distribution.

Ç

1 INTRODUCTION

THIS paper addresses the problem of automatic person
identification on the basis of scanned images of hand-

writing. We present a number of new and very effective
statistical pattern recognition methods for automatic writer
identification and verification using offline handwriting. Our
methods are experimentally evaluated using data sets with
handwriting samples collected from up to 900 subjects. There
are two distinguishing characteristics of our approach: human
intervention is minimized in the writer identification process
and we encode individual handwriting style using features
designed to be independent of the textual content of the hand-
written sample. Writer individuality is encoded using
probability distribution functions extracted from handwrit-
ten text blocks and, in our methods, the computer is
completely unaware of what has been written in the samples.
The development of our writer identification techniques
takes place at a time when many biometric modalities are
undergoing a transition from research to real full-scale
deployment. Our methods also have practical feasibility
and hold the promise of concrete applicability.

Physiological biometrics (e.g., iris, fingerprint, hand geo-
metry, retinal blood vessels, DNA) are strong modalities for
person identification due to the reduced variability and high

complexity of the biometric templates used. However, these
physiological modalities are usually more invasive and
require cooperating subjects. On the contrary, behavioral
biometrics (e.g., voice, gait, keystroke dynamics, signature,
handwriting) are less invasive, but the achievable identifica-
tion accuracy is less impressive due to the large variability of
the behavior-derived biometric templates. Writer identifica-
tion pertains to the category of behavioral biometrics and
has applicability in the forensic and historic document
analysis fields.

Writer identification is rooted in the older and broader
domain of automatic handwriting recognition [1], [2]. For
automatic handwriting recognition, invariant representa-
tions are sought which are capable of eliminating variations
between different handwriting in order to classify the shapes
of characters and words robustly. The problem of writer
identification, on the contrary, requires a specific enhance-
ment of these variations, which are characteristic to a writer’s
hand. Handwriting recognition and writer identification
therefore represent two opposing facets of handwriting
analysis. It is important, however, to also mention the idea
that writer identification could aid the recognition process if
information on the writer’s general writing habits and
idiosyncrasies is available to the handwriting recognition
system.

Research in writer identification and verification has
received significant interest in recent years due to its forensic
applicability (e.g., the case of the anthrax letters). A writer
identification system performs a one-to-many search in a large
database with handwriting samples of known authorship and
returns a likely list of candidates (see Fig. 1a1). This represents
a special case of image retrieval, where the retrieval process is
based on features capturing handwriting individuality. The
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hit list is further scrutinized by the forensic expert who makes
the final decision regarding the identity of the author of the
questioned sample. Writer identification is therefore possible
only if there exist previous samples of handwriting by that
person enrolled in the forensic database. Writer verification
involves a one-to-one comparison with a decision as to
whether or not the two samples are written by the same
person (see Fig. 1a2). The decidability of this problem gives
insight into the nature of handwriting individuality. Writer
verification has potential applicability in a scenario in which a
specific writer must be automatically detected in a stream of
handwritten documents. The target performance for forensic
writer identification systems is a near 100 percent recall of the
correct writer in a hit list of 100 writers, computed from a
database on the order of 10k samples, which is the size of the
current European forensic databases. This target performance
still remains an ambitious goal. Contrary to other forms of
biometric person identification used in forensic labs, auto-
matic writer identification often allows for determining
identity in conjunction with the intentional aspects of a crime,
such as in the case of threat or ransom letters. This is a
fundamental difference from other biometric methods, where
the relation between the evidence material and the details of
an offense can be quite remote.

Writer identification and verification are only possible to
the extent that the variation in handwriting style between
different writers exceeds the variations intrinsic to every
single writer considered in isolation (see Fig. 1b). The results
reported in this paper ultimately represent a statistical
analysis of the relationship opposing the between-writer
variability and the within-writer variability in feature space.
The present study assumes that the handwriting was
produced using a natural writing attitude. Forged or
disguised handwriting is not addressed in our approach.
The forger tries to change the handwriting style, usually by
changing the slant and/or the chosen letter shapes. Using
detailed manual analysis, forensic experts are sometimes

able to correctly identify a forged handwritten sample [3],
[4]. On the other hand, our proposed algorithms operate on
the scanned handwriting faithfully, considering all graphi-
cal shapes encountered in the image under the premise that
they are created by the habitual and natural script style of
the writer.

With regard to the theoretical basis of our approach,
handwriting can be described as a hierarchical psychomotor
process: At a high level, an abstract motor program is
recovered from long-term memory; parameters are then
specified for this motor program, such as size, shape,
timing; finally, at a peripheral level, commands are
generated for the biophysical muscle-joint systems [5]. The
writer tries to maintain his/her preferred slant and letter
shapes over the complete range of motion in the biomecha-
nical systems thumb-fingers and hand-wrist [5] and in a
manner that is also independent of changes in the
horizontal progression motion [6]. Due to neural and
neuromechanical propagation delays, a handwriting pro-
cess based upon a continuous feedback mechanism alone
would evolve too slowly [7]. Therefore, handwriting is not a
feedback process; the brain is continuously planning series
of ballistic movements ahead in time in a feed-forward
manner and a character is assumed to be produced by a
“motor program” [8]. Every person uses personalized and
characteristic shapes, called allographs, when writing a
chosen letter of the alphabet (see Fig. 1b). In this paper,
we propose writer identification methods that aim to
capture peripheral and also more central aspects of the
writing behavior of an individual. Our methods operate at
two levels of analysis: the texture level and the allograph
(character-shape) level. The texture-level features are informa-
tive for the habitual pen-grip and preferred writing slant,
while the allograph-level features reveal the character shapes
engrained in the motor memory of the writer as a result of
educational, cultural, and memetic factors [9]. Furthermore,
very effective writer identification and verification is
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Fig. 1. (a1) A writer identification system retrieves, from a database containing handwritings of known authorship, those samples that are the most
similar to the query. The hit list is then analyzed in detail by a human expert. (a2) A writer verification system compares two handwriting samples and
makes an automatic decision as to whether or not the input samples were written by the same person. (b) A comparison of handwritten characters
(allographs) and handwritten words from three different writers. The between-writer variation exceeds the within-writer variability and provides the
basis for writer identification and verification.



achievable by combining texture-level and allograph-level
features that together offer a fuller description of a person’s
stable and discriminatory unconscious practices in writing.

The paper is organized as follows: In Section 2, we survey
the recent research work on offline writer identification and
verification. Section 3 describes our experimental data sets.
Sections 4 and 5 describe the algorithms for extracting the
texture-level and the allograph-level features, respectively.
The distances used for feature matching and the feature
fusion technique are explained in Section 6. Section 7 gives the
experimental results, followed by a discussion in Section 8.
Conclusions are then drawn in Section 9.

2 A SURVEY OF RECENT RESEARCH IN THE FIELD

A comprehensive review covering the research work in
automatic writer identification until 1989 is given in [10].
Here, we will survey the approaches proposed in the last
several years as a result of the renewed interest in the
scientific community for this research topic.

Writer identification and verification methods fall into two
broad categories: text-dependent versus text-independent meth-
ods. The text-dependent methods are very similar to signature
verification techniques and use the comparison between
individual characters or words of known semantic (ASCII)
content (see Fig. 1b). These methods therefore require prior
localization and segmentation of the relevant information,
which is usually performed interactively by a human user.
The text-independent methods for writer identification and
verification use statistical features extracted from the entire
image of a text block. A minimal amount of handwriting (e.g.,
a paragraph containing a few text lines) is necessary in order
to derive stable features insensitive to the text content of the
samples. Our approach falls in this latter category. From the
application point of view, the notable advantage is that
human intervention is minimized.

Said et al. [11], [12] propose a text-independent approach
and derive writer-specific texture features using multichan-
nel Gabor filtering and gray-scale co-occurrence matrices.
The method requires uniform blocks of text that are generated
by word deskewing, setting a predefined distance between
text lines/words and text padding. Two sets of 20 writers,
25 samples per writer are used in the evaluation. Nearest
centroid classification using weighted Euclidean distance
and Gabor features achieved 96 percent writer identification
accuracy. A similar approach has also been used on machine-
print documents for script [13] and font [14] identification.

Zois and Anastassopoulos [15] perform writer identifica-
tion and verification using single words. Experiments are
performed on a data set containing 50 writers. The word
“characteristic” was written 45 times by each writer, both in
English and in Greek. After image thresholding and curve
thinning, the horizontal projection profiles are resampled,
divided into 10 segments, and processed using morphologi-
cal operators at two scales to obtain 20-dimensional feature
vectors. Classification is performed using either a Bayesian
classifier or a multilayer perceptron. Accuracies around
95 percent are obtained both for English and Greek words.

Srihari et al. [16], [17] propose a large number of features
divided into two categories. Macrofeatures operate at
document/paragraph/word level: gray-level entropy and
threshold, number of ink pixels, number of interior/exterior
contours, number of four-direction slope components,

average height/slant, paragraph aspect ratio and indenta-
tion, word length, and upper/lower zone ratio. Microfeatures
operate at word/character level: gradient, structural, and
concavity (GSC) attributes, used originally for handwritten
digit recognition [18]. Text-dependent statistical evaluations
are performed on a data set containing 1,000 writers who
copied a fixed text of 156 words (the CEDAR letter) three
times. This is the largest data set used up to the present in
writer identification studies. Microfeatures are better than
macrofeatures in identification tests with a performance
exceeding 80 percent. A multilayer perceptron or parametric
distributions are used for writer verification with an accuracy
of about 96 percent. Writer discrimination was also evaluated
using individual characters [19], [20] and words [21], [22].

Bensefia et al. [23], [24], [25], [26] use graphemes
generated by a handwriting segmentation method to
encode the individual characteristics of handwriting in-
dependent of the text content. Our allograph-level approach
is similar to the work reported in these studies. Grapheme
clustering is used to define a feature space common for all
documents in the data set. Experimental results are
reported on three data sets containing 88 writers, 39 writers
(historical documents), and 150 writers, with two samples
(text blocks) per writer. Writer identification is performed
in an information retrieval framework, while writer
verification is based on the mutual information between
the grapheme distributions in the two handwritings that are
compared. Concatenations of graphemes are also analyzed
in the mentioned papers. Writer identification rates around
90 percent are reported on the different test data sets.

Marti et al. [27] and Hertel and Bunke [28] take text lines
as the basic input unit from which text-independent
features are computed using the height of the three main
writing zones, slant and character width, the distances
between connected components, the blobs enclosed inside
ink loops, the upper/lower contours, and the thinned trace
processed using dilation operations. A feature selection
study is also performed in [29]. Using a k-nearest-neighbor
classifier, identification rates exceeding 92 percent are
obtained in tests on a subset of the IAM database [30] with
50 writers, five handwritten pages per writer. The IAM data
set will also be used in the current study.

Schlapbach and Bunke [31] use HMM-based handwrit-
ing recognizers [32] for writer identification and verifica-
tion. The recognizers are specialized for a single writer by
training using only handwriting originating from the
chosen person. This method uses the output log-likelihood
scores of the HMMs to identify the writer on separate text
lines of variable content. Results of 96 percent identification
with 2.5 percent error in verification are reported on a
subset of the IAM database containing 100 writers, five
handwritten pages per writer.

In [33], we proposed a texture-level approach using edge-
based directional PDFs as features for text-independent
writer identification. The joint PDF of “hinged” edge-angle
combinations outperformed all the other evaluated features.
Further improvements are obtained through also incorpor-
ating location information by extracting separate PDFs for
the upper and lower halves of text lines and then adjoining
the feature vectors [34]. Our allograph-level approach [9],
[35] assumes that every writer acts as a stochastic generator
of ink-blob shapes, or graphemes. The grapheme occurrence
PDF is a discriminatory feature between different writers
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and it is computed on the basis of a common shape codebook
obtained by clustering [36]. Full details regarding our
methods will be given further. An independent confirmation
of our early experimental results is given in [37]. The
contribution of this paper is that we offer a coherent overall
view of our methods and present significant algorithmic
extensions and improvements, together with a thorough
experimental evaluation. We consider both problems of
writer identification and verification and we provide a
comprehensive analysis of feature combinations.

An interactive approach involving character retracing
and DTW matching is proposed in [38]. A layered
architecture for forensic handwriting analysis systems is
proposed in [39]. The relevance of biometrics in the area of
document analysis and recognition is discussed in [40].

From the studies reviewed in this section, two main
conclusions can be drawn. First, in the text-dependent
approach, high performance is achievable even with very
small amounts of available handwritten material (on the
order of a few words). However, serious drawbacks are the
limited applicability due to the assumption of a fixed text or
the need for human intervention in localizing the objects of
interest. The text-independent approach involves less hu-
man work and has broader applicability, but it requires
larger amounts of handwriting in order to derive stable
statistical features. Second, training writer-specific para-
metric models leads to significant improvements in perfor-
mance under the assumption, however, that sufficiently
large amounts of handwriting are available for every writer.

The current paper proposes text-independent methods
for writer identification and verification. Our approach is
sparse-parametric, it involves minimal training, and the
testing conditions are relevant to the forensic application. In
our experimental data sets, there are only two samples per
writer usually containing an amount of handwriting on the
order of one paragraph of text.

3 EXPERIMENTAL DATA SETS

We conducted our experimental study using three data sets:
Firemaker, IAM, and ImUnipen.

The Firemaker set [41] contains handwriting collected
from 250 Dutch subjects, predominantly students, who were
required to write four different A4 pages. On page 1, they
were asked to copy a text of five paragraphs using normal
handwriting (i.e., predominantly lowercase with some
capital letters at the beginning of sentences and names). On
page 2, they were asked to copy another text of two
paragraphs using only uppercase letters. Page 3 contains
“forged” text and these sample are not used in the current
study. On page 4, the subjects were asked to describe the
content of a given cartoon in their own words. These samples
consist of mostly lowercase handwriting of varying text
content and the amount of written ink varies significantly,
from two lines up to a full page. The documents were scanned
at 300 dpi, 8 bits/pixel, gray-scale. In the writer identification
and verification experiments reported in this paper, we
performed searches/matches of page 1 versus 4 (Firemaker
lowercase) and paragraph 1 versus 2 from page 2 (Firemaker
uppercase).

The IAM database [30] consists of forms with handwritten
English text of variable content, scanned at 300 dpi, 8 bits/
pixel, gray-scale. Besides the writer identity, the images are

accompanied by extensive segmentation and ground-truth
information at the text line, sentence, and word levels [42].
This data set includes a variable number of handwritten
pages per writer, from one page (350 writers) to 59 pages
(one writer). In order to have comparable experimental
conditions across all data sets, we modified the IAM set to
always contain two samples per writer: We kept only the first
two documents for those writers who contributed more than
two documents to the original IAM data set and we have split
the document roughly in half for those writers with a unique
page in the original set. Our modified IAM set therefore
contains lowercase handwriting from 650 people, two
samples per writer. The amount of ink is roughly equal in
the two samples belonging to one writer, but varies between
writers from three lines up to a full page.

The ImUnipen set contains handwriting from 215 subjects,
two samples per writer. The images were derived from the
Unipen database [43] of online handwriting. The time
sequences of coordinates were transformed to simulated
300 dpi images using a Bresenham line generator and an
appropriate brushing function. The samples contain lower-
case writing with varying text content and amount of ink. This
set was not directly used in the writer identification and
verification tests reported here due to the different origin of
the images. A part of this data set containing 65 writers
(130 samples) was used in our allograph-level approach for
training the shape codebooks needed for computing the
writer-specific grapheme emission probability.

We merged the Firemaker lowercase and IAM data sets
to obtain a combined set which we named “Large.” The
Large data set therefore contains 900 writers, two samples
per writer, lowercase handwriting. This combined set is
comparable, in terms of the number of writers, to the largest
data set used in writer identification and verification until
the present [16]. It is significant to mention here that our
approach to writer identification and verification is text-
independent and does not require human effort for
labeling. This gave us the noteworthy advantage of being
able to easily extend our methods to other data sets and to
collect data from multiple sources and different languages
in a common framework. Table 1 gives an overview of all
data sets used in our tests.

4 TEXTURE-LEVEL FEATURES

Asserting writer identity based on handwriting images
requires three main processing phases: 1) feature extraction,
2) feature matching/feature combination, and 3) writer
identification and verification. In this and in the following
sections of the paper, we present the feature extraction
methods. We use probability distribution functions (PDFs)
extracted from the handwriting images to characterize writer
individuality in a text-independent manner. The term
“feature” is used to denote such a complete PDF: not a single
value, but an entire vector of probabilities capturing a facet of
handwriting uniqueness.

An overview of all the features used in our study is given
in Table 2. In our analysis, we will consider a number of
features that we have designed (f2, f3, f4) and also a number
of other features (f1, f5, f6) classically used for writer
identification and verification. For the present paper, we
have selected the most discriminative features from a larger
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number of features tested in a previous study (normalized

entropy, ink-density PDF, wavelets) [9].
A succession of image processing steps applied on the

handwriting image will provide a number of alternate base
representations which will then be used for feature
computation. The initial gray-scale images containing the
scanned samples of handwriting are binarized using Otsu’s
method [44]. The binary images, in which only the ink
pixels are “on,” undergo connected component detection
(labeling) using 8-connectivity. Further, for all connected
components, the inner and outer contours are extracted
using Moore’s contour-following algorithm. The contours
will contain the sequence of coordinates ðxk; ykÞ of all of the
pixels located exactly on the ink-background boundary.
This is a very effective vectorial representation that will
allow a fast computation of the directional features
considered further in this section. Four primary representa-
tions of the handwritten document will therefore be used
for feature computation: the gray-scale image, the binary
image, the connected components, and the contours.

The current study implicitly assumes that the foreground/
background separation can be realized in a preprocessing
phase, yielding a white background with (near) black ink.
This separation will often fail on the smudged and texture-
rich fragments sometimes collected in forensic practice,
where the ink trace is often hard to identify. However, the
complete process of forensic writer identification is never
fully automatic and present image processing methods allow
for advanced semi-interactive solutions to the foreground/
background separation problem.

Our writer identification and verification methods work at
two levels of analysis: the texture level and the allograph level.
Further, in this section, we describe the extraction methods for
the texture-level features. In these features, the handwriting is
merely seen as a texture described by some probability
distributions computed from the image and capturing the
distinctive visual appearance of the written samples.

4.1 Contour-Direction PDF (f1)

The most prominent visual attribute of handwriting that
reveals individual writing style is slant. Handwriting slant
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TABLE 1
Overview of the Experimental Data Sets, the Number of Writers Contained, and Some of Their Properties

TABLE 2
Overview of the Considered Features, Their Dimensionalities, and the Distance Functions Used in Identification and Verification

Features are grouped into four different categories: directional PDFs (f1, f2, f3h, f3v), grapheme emission PDF (f4), run-length PDFs (f5h, f5v), and
autocorrelation (f6).



is also a very stable personal characteristic [6], [5]. It has
long been known in handwriting research that the
distribution of directions in the script provides useful
information for writer identification [45], coarse writing-
style classification [46], or signature verification [47]. This
directional distribution can be computed very fast using the
contour representation, with the additional advantage that
the influence of the ink-trace width is also eliminated.

The contour-direction distribution is extracted by con-
sidering the orientation of local contour fragments. The
analyzing fragment is determined by two contour pixels
taken a certain distance apart (see Fig. 2a) and the angle that
the fragment makes with the horizontal is computed using (1).
As the algorithm runs over the contours, the orientation of the
local contour fragments is computed and an angle histogram
is thereby built. The angle histogram is then normalized to a
probability distribution pð�Þ which gives the probability of
finding in the handwriting image a contour fragment oriented
at the angle �measured from the horizontal.

� ¼ arctan ykþ� � yk
xkþ� � xk

� �
: ð1Þ

The parameter � controls the length of the analyzing
contour fragment. In our implementation, � ¼ 5 and this
value was selected such that the length of the contour
fragment is comparable to the thickness of the ink trace
(6 pixels). The angle � resides in the first two quadrants
because, without online information, we do not know which
way the writer “traveled” along the probing contour
fragment. The number of histogram bins spanning the
interval 0�-180� was set to n ¼ 12 through experimentation:
15�=bin gives a sufficiently detailed and, at the same time,
sufficiently robust description of handwriting to be used in
writer identification and verification. These settings will be
used for all of the directional features presented in this paper.

The prevalent direction in pð�Þ (see Fig. 2b) corresponds,
as expected, to the slant of writing. In handwriting
recognition, this can be used to deslant the script using a
shear transform prior to applying the statistical recognizer.
Note that not only the slant (the mode of the angular PDF),
but the entire distribution is informative for writer
identification. For example, even for the same slant angle,

a more round handwriting will have a different directional
PDF (more spread) than a more pointed handwriting and it
will still be possible to distinguish between them using pð�Þ.

4.2 Contour-Hinge PDF (f2)

The directional distribution pð�Þ represented our starting
point in designing more complex features that give a more
intimate characterization of the individual handwriting style
and ultimately yield significant improvements in writer
identification and verification performance. In order to also
capture, besides orientation, the curvature of the ink trace,
which is very discriminatory between different writers, we
designed the “hinge” feature. The central idea is to consider
not one, but two contour fragments attached at a common end
pixel and, subsequently, compute the joint probability
distribution of the orientations of the two legs of the obtained
“contour-hinge” (see Fig. 3a). To have an intuitive picture of
this feature, imagine having a hinge laid on the surface of the
image. Place its junction on top of every contour pixel, then
open the hinge and align its legs along the contour. Consider
the angles�1 and�2 that the legs make with the horizontal and
count the found instances in a two-dimensional array of bins
indexed by �1 and �2. The final normalized histogram gives
the joint PDF pð�1; �2Þquantifying the chance of finding in the
image two “hinged” contour fragments oriented at the
angles �1 and �2, respectively.

In contrast to feature f1 for which spanning the upper two
quadrants (180�) was sufficient, we now have to span all four
quadrants (360�) around the central junction pixel when
assessing the angles of the two fragments. The orientation is
now quantized in 2n directions for every leg of the “contour-
hinge.” From the total number of combinations of two angles
(4n2), we consider only nonredundant ones (�2 � �1). The
final number of combinations is C2

2n þ 2n ¼ nð2nþ 1Þ. For
n ¼ 12, the contour-hinge feature vector has 300 dimensions.

The feature pð�1; �2Þ is a bivariate PDF capturing both
the orientation and the curvature of contours. Examples are
given in Fig. 3b. Additionally, the joint probability pð�1; �2Þ
is proportional to the conditional probability pð�2j�1Þ that
can be interpreted as the transition probability from state �1

to state �2 in a simple Markov process. Feature f2 is highly
discriminative and gives very satisfying results in writer
identification and verification.
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Fig. 2. (a) Schematic description for the extraction method of the contour-direction PDF (feature f1). The handwritten letter “a,” provided as an
example, would be roughly twice as large in reality. (b) Examples of lowercase handwriting from two different subjects. We superposed the polar
diagrams of the direction distribution pð�Þ extracted from the two handwritten samples for each of the two subjects. There is a large overlap between
the directional PDFs extracted from samples originating from the same writer, while there is a substantial variation in the directional PDFs for
different writers. The examples were chosen for visual clarity.



4.3 Direction Co-Occurrence PDFs (f3h, f3v)

Building upon the same idea of combining oriented contour
fragments, we designed another feature: the directional co-
occurrence PDF. For this feature, we consider the combina-
tion of contour-angles occurring at the ends of run-lengths
on the background (see Fig. 4). The joint PDF pð�1; �3Þ of the
two contour-angles occurring at the ends of a run-length on
white captures longer range correlations between contour
directions and gives a measure of the roundness of the
written characters. Horizontal runs along the rows of the
image generate f3h and vertical runs along the columns of
the image generate f3v. The PDFs f3h and f3v have
n2 dimensions, namely, 144 in our implementation. These
features derive conceptually from the directional distribu-
tion f1 presented above and the run-length distributions f5h
and f5v, which will be described further.

The features presented thus far, f1, f2, and f3, are
directional PDFs constructed using oriented contour frag-
ments that act like local phasors and perform, in Fourier
terms, a local phase analysis at the scale of the ink-trace
width. The local phase correlations are collected in the joint
probability distributions that are generic texture descriptors
characterizing individual handwriting style independently
of the text content of the written samples.

4.4 Other Texture-Level Features: Run-Length PDFs
(f5h, f5v), Autocorrelation (f6)

Run-lengths were first proposed for writer identification in
[48], [49] and were also used on historical documents in [50].

Run lengths are determined on the binary image taking into
consideration either the black pixels corresponding to the ink
trace or the white pixels corresponding to the background.
The statistical properties of the black runs are significantly
influenced by the ink width and, therefore, by the type of pen
used for writing. The white runs capture the regions
enclosed inside the letters and also the empty spaces
between letters and words. The probability distribution of
white lengths (runs on background) will be used in our
writer identification and verification tests. There are two
basic scanning methods: horizontal along the rows of the
image (f5h) and vertical along the columns of the image (f5v).
Similarly to the contour-based directional features presented
above, the histogram of run lengths is normalized and
interpreted as a probability distribution. Our particular
implementation considers only run-lengths of up to 60 pixels
to prevent the vertical measurements from going in between
successive text lines (the height of a written line in our data
set is about 120 pixels).

To compute the autocorrelation feature (f6), every row of
the image is shifted onto itself by a given offset and then the
normalized dot product between the original row and the
shifted copy is calculated. The original gray-scale image is
used in the computation and the maximum offset (“delay”)
corresponds to 60 pixels. For every offset, the autocorrelation
coefficients are then averaged across all image rows. The
autocorrelation function detects the presence of regularity in
writing: Regular vertical strokes will overlap in the original
row and its horizontally shifted copy for offsets equal to
integer multiples of the spatial wavelength of handwriting.
This results in a large dot product contribution to the final
autocorrelation function. Autocorrelation is the only feature
in our analysis that is not a probability distribution function
and it will require a different distance measure than the other
features, Euclidean (L2 norm) rather than �2.

We note here that the autocorrelation and the power
spectrum are Fourier transform pairs. Therefore, in effect,
the autocorrelation function performs a Fourier analysis
directly in image space along the pixel rows. The amplitude
information is retained and averaged across all image rows,
while all phase information is discarded. Directional
features (f1, f2, and f3) are essentially built on local phase
information, while autocorrelation encodes only amplitude
information. It will be interesting to consider a performance
comparison in the experimental results.
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Fig. 3. (a) Schematic description for the extraction method of the contour-hinge PDF (feature f2). (b) Surface plots of the contour-hinge PDF pð�1; �2Þ
for two writers. Every writer has a different “probability landscape.” One half of the 3D plot (on one side of the main diagonal) is flat because we only
consider angle combinations with �2 � �1.

Fig. 4. Schematic description for the extraction methods of the direction

co-occurrence PDFs (horizontal scan—feature f3h on the left; vertical

scan—feature f3v on the right).



The features presented in this section are generic texture-
level descriptors that, when applied to handwriting,
capture writer individuality, thus providing the basis for
writer identification. Their virtue resides in the local
computation on the image and, as such, they are generally
applicable and do not impose additional constraints. Using
the contour representation for extracting the directional
distributions offers definite advantages regarding computa-
tion speed and control of feature dimensionality. The PDFs
can be estimated, even from samples with very reduced
amounts of written ink. In our data, many handwritten
samples contain as little as three lines of text.

5 ALLOGRAPH-LEVEL FEATURES

In this section, we present our allograph-level approach to
writer identification and verification. Our method is based
on assuming that the writer acts as a stochastic generator of
ink-blob shapes, or graphemes. The probability distribution
of grapheme usage is characteristic of each writer and is
computed using a common codebook of shapes obtained by
clustering. This approach was first applied to isolated
uppercase handwriting [9] and later it was extended to
lowercase cursive handwriting by using a segmentation
method [35]. This writer identification and verification
method involves three processing stages: handwriting
segmentation, shape codebook generation by grapheme
clustering, and computation of the writer-specific grapheme
usage PDF on the basis of the common shape codebook.
These stages will be described in detail further.

5.1 Handwriting Segmentation Method

In free-style cursive handwriting, connected-components
may encompass several characters or syllables. A segmenta-
tion method that perfectly isolates individual characters

remains an elusive goal for handwriting research. Never-
theless, several heuristics can be applied, yielding gra-
phemes (sub or supra-allographic fragments) that may or
may not overlap a complete character. While this represents a
fundamental problem for handwriting recognition, the
fraglets generated by the segmentation procedure can still
be effectively used for writer identification. The essential idea
is that the ensemble of these simple graphemes still manages
to capture the shape details of the allographs emitted by the
writer. This segmentation stage makes our allograph-level
method applicable to free-style handwriting, both cursive
and isolated.

We segment the ink at the minima in the lower contour
with the added condition that the distance to the upper
contour is on the order of the ink-trace width (see Fig. 5). After
segmentation, graphemes are extracted as connected compo-
nents, followed by a size normalization to 30� 30 pixel
bitmaps, preserving the aspect ratio of the original pattern.

5.2 Grapheme Codebook Generation by Clustering

A number of 130 samples from 65 writers have been taken
from the ImUnipen data set. The graphemes have been
extracted from these samples using the described procedure
yielding a training set containing a total of 41k patterns
(normalized bitmaps). Clustering was applied to this
training set in order to obtain a reduced list of graphemes
that will be used as a shape codebook. The graphemes in
the codebook act as prototype shapes representative of the
types of shapes that are to be expected in handwriting as a
result of segmentation.

We will compare three clustering techniques for generat-
ing the grapheme codebook: k-means, Kohonen SOM 1D,
and 2D. We use standard implementations of these methods.
Complete and clear descriptions of the algorithms can be
found in references [51], [52]. The size of the codebook (the
number of clusters used) yielding optimal performance is an
important parameter in our method and we will explore a
large range of codebook sizes in the experiments.

Fig. 6 shows examples of codebooks that have been
obtained using the three clustering methods. The two
codebooks obtained using Kohonen training show spatial
order, while the one obtained using k-means is “disorderly.”
The ksom1D codebook must be understood as a long linear
string of shapes and gradual transitions can be observed if the
map is “read” in left-to-right top-to-bottom order. The
ksom2D codebook shows a clear bidimensional organization.
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Fig. 5. Handwriting segmentation at the minima in the lower contour that

are proximal to the upper contour.

Fig. 6. Examples of codebooks with 400 graphemes. For (a) kmeans and (b) ksom1D the graphemes have been placed 25 in a row, while, for

(c) ksom2D, the 20� 20 original SOM organization has been maintained.



5.3 Computing Writer-Specific Grapheme Emission
PDF (f4)

The writer is considered to be characterized by a stochastic
pattern generator, producing a family of basic shapes. The
individual shape emission probability is computed by
building a histogram in which one bin is allocated to every
grapheme in the codebook.

For every sample i of handwriting, the graphemes are
extracted using the segmentation/connected-component-
detection/size-normalization procedure described before.
For every grapheme g in the sample, the nearest codebook
prototype w (the winner) is found using the Euclidean
distance and this occurrence is counted into the correspond-
ing histogram bin:

w ¼ argminn½distðg; CnÞ�; hiw  hiw þ 1; ð2Þ

where n is an index that runs over the shapes in the
codebook C. In the end, the histogram hi is normalized to a
probability distribution function pi that sums to 1. This PDF
is the writer descriptor used for identification and verifica-
tion (feature f4).

The essence of this method does not consist of an
exhaustive enumeration of all possible allographic part
shapes. Rather, the grapheme codebook spans a shape
space by providing a set of nearest-neighbor attractors for
the ink fraglets extracted from a given written sample. The
grapheme occurrence PDF captures the individual shape
usage preference of the writer.

6 WRITER IDENTIFICATION AND VERIFICATION BY

FEATURE MATCHING AND FUSION

After the handwritten samples have been mapped onto
features capturing writer individuality, an appropriate
distance measure between the feature vectors is needed to
compute the (dis)similarity, in individual handwriting
style, between any two chosen samples. A large number
of distance measures were tested in our experiments:
Minkowski up to order 5, �2, Bhattacharya and Hausdorff.
We will report however only on the best performing ones.

For the PDF features (f1, f2, f3, f4, f5), the �2 distance [53] is
used for matching a query sample q and any other sample i
from the database:

�2
qi ¼

XNdims
n¼1

ðpqn � pinÞ2

pqn þ pin
; ð3Þ

where p are entries in the PDF, n is the bin index, and
Ndims is the number of bins in the PDF (the dimensionality
of the feature). �2 is a natural choice as a distance measure
for the PDF features. Euclidean distance is used for the
autocorrelation (f6).

Writer identification is performed using nearest-neighbor
classification in a “leave-one-out” strategy. For a query
sample q, the distances to all of the other samples i 6¼ q are
computed using a selected feature. Then, all the samples i are
ordered in a sorted hit list with increasing distance to the
query q [53]. Ideally, the first ranked sample should be the
pair sample produced by the same writer. If one considers
not only the nearest neighbor (Top 1), but rather a longer list
of neighbors starting with the first and up to a chosen rank
(e.g., Top 10), the chance of finding the correct hit (the recall)
increases with the list size. We point out that, in our
experiments, we do not make a separation between a

training set and a test set all of the data is in one suite. This
is actually a more difficult and realistic testing condition,
with more distractors: not one, but two per false writer and
only one correct hit.

Writer verification, as all biometric verification tasks, can be
perfectly placed into the classical Neyman-Pearson frame-
work of statistical decision theory [54]. For writer verification,
the distance x between two given handwriting samples is
computed using a chosen feature. Distances up to a
predefined decision threshold T are deemed sufficiently
low for considering that the two samples have been written by
the same person. Beyond T , the samples are considered to
have been written by different persons. Two types of error are
possible: falsely accepting (FA) that two samples are written
by the same person when, in fact, this is not true or falsely
rejecting (FR) that two samples are written by the same person
when, in fact, this is the case. The associated error rates are
FAR and FRR. In a scenario in which a suspect must be found
in a stream of documents, FAR becomes the false alarm rate,
while FRR becomes the miss rate. These error rates can be
empirically computed by integrating, up to/from the
decision threshold T the probability distribution of distances
between samples written by the same person PSðxÞ and the
probability distribution of distances between samples written
by different people PDðxÞ:

FAR ¼
Z T

0

PDðxÞ dx; FRR ¼
Z 1
T

PSðxÞ dx: ð4Þ

By varying the threshold T , a Receiver Operating
Characteristic (ROC) curve is obtained that illustrates the
inevitable trade-off between the two error rates. The Equal
Error Rate (EER) corresponds to the point on the ROC curve
where FAR = FRR and it quantifies in a single number the
writer verification performance.

The features considered in the present study are not totally
orthogonal, but, nevertheless, they do offer different points of
view on a handwritten sample. It is therefore natural to try to
combine them for improving performance. In our feature
combination scheme, the final unique distance between any
two handwritten samples is computed as the average (simple
or weighted average) of the distances due to the individual
features participating in the combination (see Fig. 7).

In feature combinations, Hamming distance performed
best:

Hqi ¼
XNdims
n¼1

jpqn � pinj: ð5Þ

The �2 distance, due to the denominator (see (3)), gives
more weight to the low probability regions in the PDFs
and maximizes performance for each individual feature.
On the other hand, Hamming distance generates compar-
able distance values for the different PDF features and
offers a common ground with slight advantages in feature
combinations.

The Bayesian framework underlying the feature combi-
nation scheme proposed here entails two fundamental
assumptions: Features are independent and the probability
of two samples having been written by the same person
assumes an exponential distribution with respect to the
distance between the two samples as generated by a chosen
feature PSðxÞ / e�x=�. The decay constants � control the
weights that different features take on in the combination.
While this basic probabilistic model will almost certainly be
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violated in reality, experimental results show that signifi-
cant performance improvements are nevertheless achiev-
able by using the proposed feature combination method.

In a more general perspective, feature fusion for writer
identification and verification pertains to the broader theme
of classifier combination [55] or multimodal biometrics [56],
[57]. Information can be combined at three levels in the
biometric identification or verification process: sensor fusion,
similarity-score fusion, and decision-level fusion [58]. Combin-
ing similarity scores (“soft” fusion) seems to be the method
of choice in multimodal biometrics. This is also confirmed
in our experiments: We obtained the best feature fusion
results by combining the distances (or similarity scores)
generated by the individual features.

7 RESULTS

In this section, we present our experimental results. The
performance measures used are the Top-1 and Top-10
identification rates and the Equal-Error-Rate (EER) for
verification. As explained in Section 3 of this paper, four data
sets are considered in the experimental evaluation (see
Table 1): Firemaker uppercase (250 writers), Firemaker
lowercase (250 writers), IAM (650 writers), and Large
(900 writers obtained by merging the Firemaker lowercase

and IAM data sets). All data sets contain two samples per
writer and writer identification searches are performed in a
“leave-one-out” manner. The shape codebook necessary for
computing the grapheme occurrence probability (feature f4)
was built using part of the ImUnipen data set (65 writers, two
samples/writer, 41k bitmap patterns). This ensures a
complete separation, at the level of the writers, between the
training and the testing data. For the results reported in this
section, we used a grapheme codebook generated by k-means
clustering and containing 400 prototype shapes.

We are interested in a comparative performance analysis
of the different features across the four test data sets. We are
also interested in the improvements in performance obtained
by combining multiple features. First, we shall consider the
individual features and then their combinations. Afterward,
we will present an HTML-based visualization tool that we
developed in order to directly examine the output generated
by our writer identification and verification system.

7.1 Performances of Individual Features

Table 3 gives the writer identification and verification
performance of the individual features considered in the
present study. While there are important differences in
performance among the different features, it can be noticed
that, for a chosen feature, performance is consistent across the
four experimental data sets. The best performer is the
contour-hinge PDF (f2), followed by the grapheme-emission
PDF (f4).

The results obtained on Firemaker uppercase are compar-
able to those obtained on Firemaker lowercase. Although the
amount of ink contained in the samples varies between the
two data sets, this result is nevertheless interesting because, in
our data, the uppercase samples generally contain less
handwriting than the lowercase ones. Similar results were
reported in experiments where the amount of ink in the
samples was controlled [34]. These findings contradict the
idea that one might intuitively expect that it is always easier to
identify the author of lowercase rather than uppercase
handwriting. Naturally, the features used are sensitive to
major style variations and, in mixed searches (e.g., lowercase
query sample/uppercase data set), performance is very low.

The writer identification performances obtained on Fire-
maker lowercase and IAM are very similar, albeit the large
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Fig. 7. Feature combination scheme: The distances generated by the

individual features are averaged (using simple or weighted average) and

the result is then used in writer identification and verification.

TABLE 3
Writer Identification and Verification Performance of Individual Features

The �2 distance was used in matching. The features are explained in Table 2.



difference in the number of writers contained in the two data
sets. This is probably due to differences in the writer
distributions underlying the two data sets. The Firemaker
data set was collected from a rather uniform population in
terms of age and education, predominantly Dutch students,
and, as a consequence, there is less variation in writing styles
compared to the IAM data set. Under these conditions, when
these two data sets are combined, only a slight decrease in
writer identification performance on the Large data set is
noticed. The dependence of the writer identification rate on
the number of writers contained in the data set is discussed in
the following section of this paper. For the size of the data sets
used here, the writer identification percentages are subject to
a 3-4 percent confidence interval at a 95 percent confidence
level.

From the point of view of Fourier analysis, it is important
to observe that the contour-direction feature f1 encoding
local phase information performs much better than the
autocorrelation feature f6 encoding amplitude information.
In computer vision, it is commonly acknowledged that
phase information is predominantly used for identification,
while amplitude information is generally used for recogni-
tion, mainly due to the shift-invariance of the power
spectrum. Phase demodulation and phase-based represen-
tations are pervasive in biometric identification [59], [60].

Furthermore, the contour-angle combination features f2,
f3h, and f3v, based on local phase correlations, deliver
significant improvements in performance over the basic
directional PDF f1. This confirms the general principle that
joint probability distributions do capture more information
from the input signal. And, despite their higher dimension-
alities, reliable probability estimates can be obtained for the
proposed joint PDFs when a few handwritten text lines are
available (usually more than three in our data sets). An
analysis of writer identification performance versus amount
of ink contained in the samples is given in [33].

In brief, our results show that the contour-based angle-
combination PDFs (f2, f3h, f3v) and the grapheme-emission
PDF (f4) outperform the other features over the four test

data sets. They constitute the gist of our text-independent
approach to writer identification and verification.

7.2 Performances of Feature Combinations

The features considered in the present study capture
different aspects of handwriting individuality and operate
at different levels of analysis and also at different scales.
While our features are not completely orthogonal, combin-
ing multiple features proves, nevertheless, to be beneficial.

As stated previously, feature fusion is performed by
distance averaging. Assigning distinct weights to the
different features participating in the combination yields
only very small performance improvements, as will be
shown further. This has led us to prefer simplicity and
robustness here and report the feature combination results
obtained by plain distance averaging.

The features studied in the paper can be grouped into
four broad categories (see Table 2): contour-based direc-
tional PDFs (f1, f2, f3h, f3v), grapheme emission PDF (f4),
run-length PDFs (f5h, f5v), and autocorrelation (f6). We will
analyze combinations of features within and between these
broad feature groups.

First, we consider the natural combinations f3h with f3v
and f5h with f5v (first two rows of Table 4). Features f3 and
f5 are therefore obtained by combining the two orthogonal
directions of scanning the input image. Compared to their
single horizontal or vertical counterparts, the fused features
perform markedly better and they will be used, as such, in
future combinations.

It is important to note that further combining directional
features (f1 & f2, f1 & f3, f2 & f3, or f1 & f2 & f3) did not produce
extra improvements over the performance of the best feature
involved in the combination. Rather, the experimental results
show that improvements are obtained by combining features
from different feature groups. In the results given in Table 4,
the combined performance exceeds the performances of all
individual features involved in the combination, with only
one exception, marked with parentheses. As can be noticed,
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TABLE 4
Writer Identification and Verification Performance of Feature Combinations

The Hamming distance was used in matching. Combining features from different feature groups yields improvements in performance over the best
individual feature participating in the combination. There is one exception marked with parentheses: Top-1 identification rate for f2 & f4 on Firemaker
uppercase data set.



the performance of feature combinations is generally con-
sistent over the four experimental data sets.

The best performing feature combinations fuse direc-
tional, grapheme, and run-length information, yielding, on
the Large data set, writer identification rates of 85-87 percent
Top-1 and 96 percent Top-10 with an EER around 3 percent
for verification.

In Fig. 8, we show the results obtained by considering
a weighted combination between features f2 and f4:
d ¼ ð1� �Þd2 þ �d4, where � is the mixing coefficient. Only
marginal improvements are attainable over the performance,
corresponding to simple distance averaging at � ¼ 0:5. These
results are, in fact, representative for extensive weight
optimization tests carried out on different feature combina-
tions and generating, in the end, very small overall
additional performance improvements. Such a direct feature
combination by simple distance averaging is possible in our
case because the fused features are PDFs (that sum to 1) and,

for a chosen pair of samples, the Hamming distances
produced by the different features lie roughly within the
same range. The only exception is the autocorrelation
feature f6 which requires weighting with respect to the other
features. This has led, however, to only minor additional
performance improvements, only about 1 percent increase in
the Top-1 identification rate.

We mention that we replaced the linear distance
combiner with an SVM [61], [62] trained for writer
verification. The output of the SVM, i.e., the distance to
the separating hyperplane in the space induced by the
kernel function, was used for writer identification (ordering
the samples with increasing distance) and writer verifica-
tion (decision same/different writer). The linear kernel
outperformed the other general purpose kernels (polyno-
mial, radial basis, sigmoid). However, the experimental
results were rather dismal, not justifying, in our view, the
increase in system complexity and computation time. We
also experimented with Borda rank combination schemes
with only marginal performance improvements [34].

Fig. 9a gives a graphical overview of the writer identifica-
tion results on the Large data set for individual features and
for the best performing feature combination. The Top-1 and
Top-10 recall rates were used as anchor points in reporting the
numerical results from Table 3 and Table 4. Fig. 9b gives the
writer verification ROC curves. In our case, the EER values
are sufficiently descriptive, as a performance measure, for the
whole profile of the corresponding ROC curves.

7.3 Visualization Tool

After feature extraction, feature matching, and performance
calculation, our programs generate HTML files containing
numerical results (distances, ranks, writer/sample identity
codes, thresholds) and hyperlinks to the handwritten
samples. Figs. 10, 11, and 12 show examples of hit lists
generated by our system, dubbed GRAWIS for Groningen
Automatic Writer Identification System. A Web browser can
then be used to visualize these HTML files. This HTML-
based approach allows quick development of the visualiza-
tion tool without the considerable programming effort
needed to construct a complete graphical user interface. For
a chosen query sample, writer identification searches can be
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Fig. 8. Writer identification and verification performance for a weighted
combination of features f2 and f4 on the Large data set. Only marginal
improvements are obtainable over the performance levels of the simple
average combination represented by the horizontal lines and corre-
sponding to a mixing coefficient � ¼ 0:5.

Fig. 9. (a) Writer identification performance as a function of hit list size. (b) Writer verification ROC curves. These results were obtained on the Large
data set containing 900 writers, two samples per writer.



run using a battery of different features or feature combina-

tions. Every sample from a hit list can, in turn, become the

query and this allows very handy navigation in the space of

individual handwriting styles.
Fig. 10 shows a hit list generated by feature f5 (fused

horizontal and vertical run-length PDFs) applied on the

Large set. The query sample is placed at the top-center and

the correct hit (the pair sample written by the same writer)

is in position 5. A rather heterogeneous handwriting style is

noticeable across the retrieved samples. Fig. 11 shows a

successful hit list generated by the best performing feature

combination (f2 & f4 & f5) for the same query sample. The
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Fig. 10. Writer identification hit list generated by the moderately performing feature f5 on the Large data set. The query sample is in the top-center
position and the correct hit is on rank 5 (marked with a darker frame). The handwriting style is heterogeneous across the hit list.

Fig. 11. A successful writer identification search using the best performing feature combination f2 & f4 & f5 for the same query sample as in Fig. 10.
The best-matching sample (rank 1) was written by the same writer. A uniform handwriting style can be observed across the query sample and at the
top of the hit list.



correct hit is now in position 1 and the handwriting style is
homogeneous across the hit list. Fig. 12 shows another
successful hit list generated by the contour-hinge feature f2
applied on the Firemaker uppercase data set.

It is also interesting to see the writer verification errors
produced by GRAWIS and to visually judge the resemblance
between the handwritings being compared. Fig. 13a shows a
false reject error and Fig. 13b shows a false accept error. These
examples were selected to illustrate very problematic cases
where the within-writer variability arguably exceeds the
between-writer variability at the fringes of the Bayes decision
boundary in the writer verification task.

8 DISCUSSION

The analyzed features are not complete: Feature extraction
is a lossy operation and, thus, starting from the feature
values, a total reconstruction of the input handwriting
image is not possible. On the other hand, this is also not
desirable as we are interested in text-independent methods
for writer identification and verification. Our features used

to encode individual handwriting style are independent of
the textual content of the handwritten sample. The hand-
writing is merely seen as a texture characterized by joint
directional probability distributions or as a simple stochas-
tic shape-emission process characterized by a grapheme
occurrence probability.

The directional PDFs (f1, f2, f3) operate at the scale of the
ink-trace width and implement a local phase analysis
yielding results that are significantly better than those of the
autocorrelation feature (f6) capturing amplitude information.
The writer-specific shape-emission PDF (f4) operates at the
scale of characters. Combining information across multiple
scales by feature fusion results in sizeable performance
improvements. The presented fusion method based on
simple distance averaging diminishes the risk of a biased
solution while capturing most of the achievable increases in
writer identification and verification performance.

We accomplished a more in-depth analysis of our
allograph-level method. The computation of feature f4
depends on two important issues: the size of the shape
codebook and the clustering algorithm used to generate
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Fig. 12. A successful writer identification search using the best performing individual feature f2 on the Firemaker uppercase data set. The correct hit

is in the first position and the handwriting style is uniform across the hit list.

Fig. 13. (a) Example of a false reject error in writer verification: The two samples were written by the same person, but the system wrongly decided

the opposite. (b) Example of a false accept error in writer verification: The two samples were written by different people and the system made the

wrong decision in this case.



the codebook. We have run large-scale computational
experiments to compare three clustering methods over a
large range of codebook sizes: k-means, Kohonen SOM 1D,
and 2D (see Fig. 6). The number of clusters used was
varied from 9 (3� 3) to 2,500 (50� 50). A number of
200 epochs has been used for training the Kohonen SOMs.
Computations have been run on a Beowulf high-perfor-
mance Linux cluster with 1.7 GHz/0.5 GB nodes. Training
times for codebooks of size 400 were: k-means—1 hrs,
ksom1D —10 hrs, ksom2D—17 hrs. Computation times for
the grapheme emission PDF on codebooks of size 400
were: k-means—0.5 s/sample, ksom1D—1.5 s/sample,
ksom2D—3.1 s/sample. These computation times were
obtained using the “gcc” compiler with optimization for
single-precision floating-point calculations. The total com-
putation time used in the experiments amounts to
approximately 800 CPU hrs.

Fig. 14 a shows our results obtained on the Large data set. It
is remarkable that the same performance is achieved by all
three clustering methods and that performance is stable over a
large range of codebook sizes. Writer identification rates
(Top-1 and Top-10) reach a plateau for codebook sizes larger
than about 100 (10� 10) shapes. The writer verification EER
reaches a minimum of about 4 percent for a codebook size of
100 and increases to about 7 percent for larger codebooks. This
effect can be explained considering that, as the codebook size
increases, the grapheme emission PDFs reside in increasingly
higher dimensional spaces that progressively become less
and less populated. The distances between the individual
handwriting samples increase in relative terms. As a result, it
gradually becomes more difficult to find a unique threshold
distance that separates the sample pairs written by the same
person from those written by different people. Clearly, an
individualized threshold is needed that depends on the
variability in feature space of the handwriting belonging to
that particular person. However, estimating this within-
writer variability using a limited amount of handwritten
material is a difficult problem that requires further research.
The described dimensionality problem does not significantly
affect the distance rankings with respect to a chosen sample
and, consequently, writer identification performance re-
mains essentially stable over a large range of codebook sizes.
Similar results were also found on the other test data sets [36].

The results reported for the grapheme-emission PDF
(feature f4) in the previous sections of the paper were
obtained using a codebook generated by k-means clustering
and containing 400 graphemes, which was chosen as an
anchor point. The grapheme codebook is obtained much
faster using k-means instead of Kohonen training. The
writer identification results presented here are in the same
ballpark as the ones we reported in a previous study using
contours (rather than normalized bitmaps) for shape
representation and Kohonen 2D for codebook training [35].

The grapheme codebook spans the shape space of the
possible allographic parts encountered in handwritten
samples as a result of the ink segmentation procedure.
The three clustering methods considered here seem to
perform the task of selecting representative graphemes
adequate for constructing shape-occurrence PDFs informa-
tive about writer identity equally well. The proposed
allograph-level method proves to be robust to the under-
lying shape representation used (whether contours or
bitmaps), to the size of codebook used (stable performance
for sizes 102 to 2:5� 103), and to the clustering method used
to generate the codebook (the same performance was
obtained for k-means, ksom1D, and ksom2D).

In order to complete our study, another necessary analysis
was carried out evaluating how the identification perfor-
mance (Top-1 and Top-10) depends on the number of writers
contained in the test data set. We determined this relationship
by experiment using the Large data set: For each size of the
writer set (up to 900 writers), 50 identification tests were
performed on random selections of writers and the results
were averaged. Fig. 14b shows the Top-1 identification rate as
a function of the number of writers for individual features
and for the feature combination f2 & f4 & f5. Naturally, the
identification rate decreases as the number of writers grows.
However, the decline is not severe. In the range studied, for
the best performing feature combination, f2 & f4 & f5, we
observe that the Top-1 identification rate drops by approxi-
mately 2-3 percent for every doubling of the number of
writers in the data set. Our writer identification system shows
usable performance for 103 writer sets. Undoubtedly, further
experiments with larger numbers of writers are needed in
order to approach the 104 scale of the actual forensic
databases.
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Fig. 14. (a) Performance versus clustering method and codebook size for the grapheme-based writer identification and verification method

(feature f4) on the Large data set. (b) Top-1 identification rate versus number of writers contained in the test. For every size of the writer set, the

results were averaged over 50 random draws from the Large data set.



The writer identification experiments reported in this
paper always involved two samples per writer: One was used
as the query, while the other one represented the correct hit
that the system was supposed to find in the database. Having
more samples per writer enrolled in the database increases
the chance of finding in the top positions of the hit list the
correct author for a given query. We have run writer
identification tests on the original IAM database that
included at least three samples per writer for about a quarter
of the total of 650 writers incorporated in the set. For the best
performing feature combination, f2 & f4 & f5, we obtained
writer identification rates of Top-1 92 percent and Top-10
98 percent. These values exceed the identification rates
obtained on our modified IAM set that always contained
only two samples per writer (see Table 4).

In another study performed on a subset comprised of
100 writers from the Firemaker data set, our methods largely
outperformed two actual systems used in current forensic
practice [9]. The use of automatic and computation-intensive
approaches in this application domain will allow for massive
search in large databases, with less human intervention than
is current practice. By reducing the size of a target set of
writers, detailed manual and microscopic forensic analysis
becomes feasible. In the foreseeable future, the toolbox of the
forensic expert will have been thoroughly modernized and
extended. Part of our directional texture-level features have
already been included in real-life applications.

It is important to note that the methods described in this
paper are equally applicable to handwriting as well as
machine print: writer identification versus font identification
(e.g., for OCR). Besides the forensic field, interesting potential
applications are in the domain of historic document analysis:
identification of scribes or manuscript dating on medieval
handwritten documents or identification of the printing
house on historic prints. Furthermore, writer identification
may be used in handwriting recognition as a preprocessing
step, allowing the use of dedicated recognizers specialized to
one writer or to a limit group of writers with similar
handwriting styles.

9 CONCLUSIONS

The writer identification and verification methods de-
scribed in this paper exploit two essential sources of
behavioral information regarding handwriting individual-
ity. First, habitual pen grip and preferred writing slant and
curvature are reflected in the directional texture-level
features that operate in the angular domain at the scale of
the ink-trace width. Second, the personalized set of
allographs that each person uses in writing is captured by
the grapheme occurrence probability. This feature works in
the Cartesian domain at the scale of the character shapes.

The proposed features are probability distributions ex-
tracted from the handwriting images and offer a text-
independent and robust characterization of individual hand-
writing style. They have practical feasibility and they are
applicable to free-style handwriting, both cursive and iso-
lated. Combining texture-level and allograph-level features
yields very high writer identification and verification perfor-
mance, with usable rates for data sets containing 103 writers.

The challenge is to integrate the recent developments in
this field of behavioral biometrics into the real writer
identification systems of the future.
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[39] K. Franke and M. Köppen, “A Computer-Based System to Support
Forensic Studies on Handwritten Documents,” Int’l J. Document
Analysis and Recognition, vol. 3, no. 4, pp. 218-231, 2001.

[40] M. Fairhurst, “Document Identity, Authentication and Ownership:
the Future of Biometric Verification,” Proc. Seventh Int’l Conf.
Document Analysis and Recognition, vol. II, pp. 1108-1116, Aug. 2003.

[41] L. Schomaker and L. Vuurpijl, “Forensic Writer Identification: A
Benchmark Data Set and a Comparison of Two Systems,”
technical report, Nijmegen: NICI, 2000.

[42] M. Zimmermann and H. Bunke, “Automatic Segmentation of the
IAM Offline Database for Handwritten English Text,” Proc. 16th
Int’l Conf. Pattern Recognition, vol. 4, pp. 35-39, 2002.

[43] I. Guyon, L. Schomaker, R. Plamondon, R. Liberman, and S. Janet,
“UNIPEN Project of Online Data Exchange and Recognizer Bench-
marks,” Proc. 12th Int’l Conf. Pattern Recognition, pp. 29-33, Oct. 1994.

[44] N. Otsu, “A Threshold Selection Method from Gray-Level Histo-
gram,” IEEE Trans. Systems, Man, and Cybernetics, vol. 9, pp. 62-69,
1979.

[45] F. Maarse, L. Schomaker, and H.-L. Teulings, “Automatic
Identification of Writers,” Human-Computer Interaction: Psycho-
nomic Aspects, pp. 353-360, 1988.

[46] J.-P. Crettez, “A Set of Handwriting Families: Style Recognition,”
Proc. Third Int’l Conf. Document Analysis and Recognition, pp. 489-
494, Aug. 1995.

[47] J. Drouhard, R. Sabourin, and M. Godbout, “A Comparative Study
of the k Nearest Neighbours, Threshold and Neural Network
Classifiers for Handwritten Signature Verification Using an
Enhanced Directional PDF,” Proc. Third Int’l Conf. Document
Analysis and Recognition, pp. 807-810, 1995.

[48] B. Arazi, “Handwriting Identification by Means of Run-Length
Measurements,” IEEE Trans. Systems, Man, and Cybernetics, vol. 7,
no. 12, pp. 878-881, 1977.

[49] B. Arazi, “Automatic Handwriting Identification Based on the
External Properties of the Samples,” IEEE Trans. Systems, Man, and
Cybernetics, vol. 13, no. 4, pp. 635-642, 1983.

[50] I. Dinstein and Y. Shapira, “Ancient Hebraic Handwriting
Identification with Run-Length Histograms,” IEEE Trans. Systems,
Man, and Cybernetics, vol. 12, no. 3, pp. 405-409, 1982.

[51] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, second
ed. Wiley Interscience, 2001.

[52] T. Kohonen, Self-Organization and Associative Memory, second ed.
Springer Verlag, 1988.

[53] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes in C: The Art of Scientific Computing, second ed. Cambridge
Univ. Press, 1992.

[54] J. Neyman and E. Pearson, “On the Problem of the Most Efficient
Tests of Statistical Hypotheses,” Philosophical Trans. Royal Soc. A,
vol. 231, pp. 289-337, 1933.

[55] J. Kittler, M. Hatef, R. Duin, and J. Matas, “On Combining
Classifiers,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 20, no. 3, pp. 226-239, Mar. 1998.

[56] D. Maltoni, D. Maio, A.K. Jain, and S. Prabhakar, Handbook of
Fingerprint Recognition. Springer, 2003.

[57] F. Roli, J. Kittler, G. Fumera, and D. Muntoni, “An Experimental
Comparison of Classifier Fusion Rules for Multimodal Personal
Identity Verification Systems,” Proc. Conf. Multiple Classifier
Systems, pp. 325-336, 2002.

[58] J.G. Daugman, “Biometric Decision Landscapes,” Technical Report
TR482, Computer Laboratory, Univ. of Cambridge, Jan. 2000.

[59] J.G. Daugman, “High Confidence Visual Recognition of Persons
by a Test of Statistical Independence,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 15, no. 11, pp. 1148-1160, Nov. 1993.

[60] A. Jain, L. Hong, and R. Bolle, “Online Fingerprint Verification,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 4,
pp. 302-314, Apr. 1997.

[61] T. Joachims, “Making Large-Scale SVM Learning Practical,”
Advances in Kernel Methods—Support Vector Learning, MIT Press,
1999.

[62] N. Cristianini and J. Shawe-Taylor, An Introduction to Support
Vector Machines. Cambridge Univ. Press, 2000.

Marius Bulacu received the BSc and MSc
degrees in physics from the University of
Bucharest, Romania, in 1997 and 1998, respec-
tively. He did teaching and research in the
Biophysics Department, Faculty of Physics,
University of Bucharest from 1999 to 2002. Since
March 2002, he has been with the Artificial
Intelligence Institute of the University of Gronin-
gen, The Netherlands, pursuing the PhD degree.
He is currently working on developing statistical

pattern recognition methods for automatic writer identification and for
handwritten historical document retrieval. His scientific interests include
computer vision, statistical pattern recognition, biometrics, and document
analysis and recognition. He is a student member of the IEEE and the
IEEE Computer Society.

Lambert Schomaker received the MSc degree
cum laude in psychophysiological psychology in
1983 and the PhD degree on the simulation and
recognition of pen movement in handwriting in
1991 from Nijmegen University, The Nether-
lands. Since 1988, he has worked in several
European research projects concerning the
recognition of online, connected cursive script,
and multimodal multimedia interfaces. Current
projects are in the area of image-based retrieval,

historical handwritten document analysis, and forensic handwriting
analysis systems. Professor Schomaker is a member of the IEEE, the
IEEE Computer Society, and the IAPR. He has contributed to more than
60 reviewed publications in journals and books. In 2001, he accepted
the position of full professor and director of the AI Institute at Groningen
University, The Netherlands.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BULACU AND SCHOMAKER: TEXT-INDEPENDENT WRITER IDENTIFICATION AND VERIFICATION USING TEXTURAL AND ALLOGRAPHIC... 717



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


